![]() |
Optimization of Naïve Bayes Data Mining Classification Algorithm |
Journal
|
Subject and more
|
AUTHORS
|
FULL TEXT
To download PDF files Login to your Account.
|
ABSTRACTAs a probability-based statistical classification method, the Naïve Bayesian classifier has gained wide popularity; however, the performance of Naive Bayes classification algorithm suffers in the domains (data set) that involve correlated features. [Correlated features are the features which have a mutual relationship or connection with each other. As correlated features are related to each other, they are measuring the same feature only, means they are redundant features]. This paper is focused upon optimization of Naive Bayes classification algorithms to improve the accuracy of generated classification results with reduced time to build the model from training dataset. The aim is to improve the performance of Naive Bayes algorithms by removing the redundant correlated features before giving the dataset to classifier. This paper highlights and discusses the mathematical derivation of Naive Bayes classifier and theoretically proves how the redundant correlated features reduce the accuracy of the classification algorithm. Finally, from the experimental reviews using WEKA data mining software, this paper presents the impressive results with significant improvement into the accuracy and time taken to build the model by Naive Bayes classification algorithm. |