Numerical analysis of stress-strain state of vertical cylindrical oil tanks with dents
Journal Title: Проблеми машинобудування - Year 2018, Vol 21, Issue 1
Abstract
The destruction of vertical cylindrical tanks results in both human and economic losses. Despite constant improvement of the manufacturing technology of cylindrical tanks, a complete analysis of the influence of various dents on stress-strain states was not performed. Dents are the most dangerous, unpredictable zones that are studied a little. It should be specially emphasized that there is no system to assess the stress concentrations in the dent zone, and the regulatory documents for the construction and operation of oil tanks do not take into account the stress-strain state in the dent. The paper presents the results of a finite element analysis of the stress-strain states of the cylindrical tanks with spherical dents. On the basis of the finite element analysis, approximate relationships are derived for stress concentration coefficients that can be used to calculate various sized cylindrical tanks with different dents. A cylindrical tank with a spherical dent is investigated. The reasons for dent formation are not considered. It is assumed that there are no residual stresses in the dent area. Simulating the stress-strain state of the tank, the conclusion is made that the greatest stresses are observed in the lower part of the dent. As in the lower part of the dent, the internal pressure of fuel oil is greater. At high values of the relative depth of the dent the maximum stresses are observed only at the lower boundary of the dent. An approximation technique for calculating the stress concentration factor in the dent is proposed. An approximate model of the stress concentration factor due to the dent size parameters is built for an example tank
Authors and Affiliations
S. Buganova, K. Avramov
Design Forecasting of Thermal Strength and Resource of Steam Turbine structural Components
Effective and reliable operation of power units is closely connected with the provision of the thermal strength and durability of their elements and components. The needs of the modern energy market lead to the operation...
Major Stress-Strain State of Double Support Multilayer Beams Under Concentrated Load. Part 1. Model Construction
The development of composite technologies contributes to their being widely introduced into the practice of designing modern different-purpose structures. Reliable prediction of the stress-strain state of composite eleme...
Calculated Evaluation of the Thermal Physical Properties of Nitrogen as a Working Fluid of Cryogenic Piston Engines. Heat Conductivity Calculation
Vehicles with internal combustion engines (ICEs) used by many enterprises or high fire hazard facilities (airports, docks, elevators, chemical plants, refineries) can be sources of ignition due to the peculiarity of thei...
Prospects of Using Hydrogen Microaddition to Improve Diesel Engine Ecological Indicators
The problem of environmental degradation in megapolises, particularly because of the toxicity of the exhaust gases of transport engines, requires an integrated solution. The peculiarity of the processes of mixture format...
Solution of the Structural Optimization Problem of a Multiagent Approach Based Cutter Design
This article proposes a decision support system project to find the optimal milling cutter design. At the preliminary design stage, morphological analysis is used. It allows us to find and systematize all possible millin...