The relationship between vertical leg stiffness and gross mechanical efficiency in cyclists

Journal Title: Journal of Science and Cycling - Year 2014, Vol 3, Issue 2

Abstract

Background: Professional cyclists have been shown to have a mechanical efficiency that is 11% higher compared to amateur cyclists (Coyle et al. 1991: Med Sci Sports Exerc, 23 (1), 93-107). The variations in power between professional and amateur cyclists are associated with a greater torque development at the first phase of the pedal revolution (Coyle et al. 1991). It has also been shown in cyclists that a relationship exists between vertical leg stiffness and the peak power output (PPO) (r = 0.75, p < 0.01) achieved during a 30 s Wingate test (Pitchers et al. 2013: The relationship of vertical leg stiffness, peak power output and V̇O2max in recreationally active cyclists: identification of the interface between human and bike. 9th Annual Conference of the United Kingdom Strength & Conditioning Association, Nottingham, UK). Vertical leg stiffness may be important to cycling performance as the majority of the force produced is vertical and optimisation of the stretch shortening cycle may limit energy wastage during the propulsive phase (So et al. 2005: Phys Ther Sports, 6, 89-96; Fonda & Sarabon 2010: Sport Sci Rev, 19 (1), 187-210). The relationship between vertical leg stiffness and mechanical efficiency during cycling has yet to be examined. Purpose: To assess the relationship between vertical leg stiffness and gross mechanical efficiency (GE) in cycling. Methods: In a single group, within subjects design, 11 recreationally active male cyclists (age 34 ± 6 y, V̇O2max 57.4 ± 7.5 ml∙kg∙min-1, body mass 81 ± 1.2 kg, stature 1.81 ± 0.06 m) completed two testing sessions, with a minimum of 48 hr rest between each session. In the first testing session participants completed a stiffness familiarisation before an incremental cycle test to establish V̇O2max. At the second session participants completed 20 sub-maximal bilateral hops at a frequency of 2.3 Hz. This was followed by three 8 min sub-maximal cycling bouts at 50, 55 and 60 % of the participants’ individual maximal minute power (MMP) to establish GE (Table I). Results: Mean values for GE and vertical leg stiffness were 19.0 ± 1.4 % and 34.1 ± 9.0 kN∙m-1, respectively. Pearson’s correlation coefficient revealed no relationship between vertical leg stiffness and GE (r = -0.07, p = 0.85). Discussion: The main finding is that in recreationally active male cyclists there is no relationship between vertical leg stiffness and GE. In this group these findings indicate that GE is likely influenced more by other biological systems rather than the mechanical properties of the musculoskeletal system. However, these data may not be reflective of an elite sample where higher leg stiffness might be more likely to influence GE at higher power outputs. Conclusion: Whilst vertical leg stiffness has been shown to have a strong relationship with PPO (Pitchers et al 2013) in recreational cyclists, this is not the case for GE. Further work is needed to establish if this is also the case in an elite population.

Authors and Affiliations

JD Hughes| Exercise & Sport Research Centre, University of Gloucestershire, Gloucester, United Kingdom., G Pitchers| Exercise & Sport Research Centre, University of Gloucestershire, Gloucester, United Kingdom., SC How| Exercise & Sport Research Centre, University of Gloucestershire, Gloucester, United Kingdom., M Cole| Exercise & Sport Research Centre, University of Gloucestershire, Gloucester, United Kingdom.

Keywords

Related Articles

The acute effect of whole-body vibration on cycling peak power output

The aim of the present study was to determine if an acute bout of whole-body vibration (WBV) prior to sprint cycling would increase peak power output. Ten male cyclists, all familiar with maximal sprint cycling exercise...

An optimal control approach to the high intensity interval training design

Prediction of the acute response induced by various training protocols is of great importance when looking for a systematic approach in designing high intensity training (HIT) sessions. The prediction of some of the inde...

Pedal force effectiveness in Cycling: a review of constraints and training effects

Pedal force effectiveness in cycling is usually measured by the ratio of force perpendicular to the crank (effective force) and total force applied to the pedal (resultant force). Most studies measuring pedal forces have...

Analysis of Mean Maximal Power in cycling with a modified Critical Power model allowing for a non-constant Anaerobic Work Capacity

Introduction: Since its introduction by Monod and Sherrer1 the Critical Power model has been applied to the analysis of cycling performances. In this model the Critical Power CP is the highest power that can be sustained...

The physical, mental and hormonal responses to short-term intensified training in well-trained cyclists with a high carbohydrate nutritional intervention

Background: Short periods of intensified training (IT) are a regular feature in a cyclist’s training programme. The aim of this study was to monitor changes in performance, mood state and plasma hormones during short ter...

Download PDF file
  • EP ID EP2850
  • DOI -
  • Views 366
  • Downloads 24

How To Cite

JD Hughes, G Pitchers, SC How, M Cole (2014). The relationship between vertical leg stiffness and gross mechanical efficiency in cyclists. Journal of Science and Cycling, 3(2), 0-0. https://europub.co.uk/articles/-A-2850