A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models

Journal Title: Khoon - Year 2018, Vol 14, Issue 4

Abstract

Background and Objectives One of the major issues in global healthcare systems is the issue of improving supply chain performance and uncertainties in demand. The aim of this study is to forecast blood platelet demand with artificial neural network and Arima Models in the blood transfusion supply chain in Sistan and Baluchistan province. Materials and Methods In this applied study, the data on demand for 8 types of blood platelets were collected from the Zahedan Blood Center between 2011 and 2015. Then, using artificial neural network models and ARIMA models, daily demand forecasts were made. Then, according to MSE performance evaluation criteria, the results of the above-mentioned methods were compared. The data were analyzed by MetlabR2016b and Eviews 6 softwares. Results The results of this study indicate the high accuracy of neural network models followed by Arima compared to that calculated in the current profile of IBTO. The average accuracy according to MSE of the two models for platelet types are: O+ (0.0132±0.0048), O- (0.0115 ± 0.0041), A+ (0.0205 ± 0.0043), A- (0.0108 ± 0.0033), B+ (0.0221 ± 0.0086), B- (0.0045 ± 0.0009), AB+ (0.0136 ± 0.0031), AB- (0.0034 ± 0.0005) which represent the mean and standard deviation of the error, respectively. Conclusions The results of this study indicate the high accuracy of artificial neural network models followd by Arima in predicting blood platelet demand. Therefore, using artificial neural network models for prediction of demand is recommended instead of common statistical prediction methods in blood centers. Key words: Blood Platelets, Arima, Blood Transfusion

Authors and Affiliations

F. Firouzi Jahantigh, B. Fanoodi, S. Khosravi

Keywords

Related Articles

تعيين ژنوتيپ‌ ويروس هپاتيت B در استان گلستان

تعيين ژنوتيپ‌ ويروس هپاتيت B در استان گلستان عبدالوهاب مرادي1، وحيده كاظمي‌نژاد2، علي‌اصغر مولانا3، مسعود بازوري4 چكيده سابقه و هدف حدود 5% جمعيت دنيا به ويروس هپاتيت B آلوده هستند. عفونت با اين ويروس، موجب آس...

طب انتقال خون گذشته، حال و آينده

طب انتقال خون گذشته، حال و آينده دكتر علي‌اكبر پورفتح‌اله1 خون در طول تاريخ حيات بشر بخشي از زندگي، تفكر و انديشه انساني بوده‌است. با نگاهي به شواهد تاريخي در مسير تكامل طب انتقال خون، چهار مرحله را به طو...

جهش‌هاي ژن گلوبين‌ بتا و پلي‌مورفيسم Gγ XmnI در بيماران تالاسمي اينترمديا مراجعه‌كننده به بيمارستان علي‌اصغر(ع) تهران

جهش‌هاي ژن گلوبين‌ بتا و پلي‌مورفيسم Gγ XmnI در بيماران تالاسمي اينترمديا مراجعه‌كننده به بيمارستان علي‌اصغر(ع) تهران علي رجبي1، آيدا عرب2، مرتضي كريمي‌پور3، سعيد كاوياني4، خديجه ارجمندي5، سيروس زينلي6 چكيده ساب...

A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models

Background and Objectives One of the major issues in global healthcare systems is the issue of improving supply chain performance and uncertainties in demand. The aim of this study is to forecast blood platelet demand wi...

The Efficacy impact of donor temporary deferal on the safety of blood donations in Iran during the years 2012-2014

The Efficacy impact of donor temporary deferal on the safety of blood donations in Iran during the years 2012-2014 Hatami H.1, Maghsudlu M.2, Balali M.R.2, Seyfi Targhi M.M.2 1School of Public Helath and Safety, Sha...

Download PDF file
  • EP ID EP253102
  • DOI -
  • Views 73
  • Downloads 0

How To Cite

F. Firouzi Jahantigh, B. Fanoodi, S. Khosravi (2018). A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models. Khoon, 14(4), 335-345. https://europub.co.uk/articles/-A-253102