A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models

Journal Title: Khoon - Year 2018, Vol 14, Issue 4

Abstract

Background and Objectives One of the major issues in global healthcare systems is the issue of improving supply chain performance and uncertainties in demand. The aim of this study is to forecast blood platelet demand with artificial neural network and Arima Models in the blood transfusion supply chain in Sistan and Baluchistan province. Materials and Methods In this applied study, the data on demand for 8 types of blood platelets were collected from the Zahedan Blood Center between 2011 and 2015. Then, using artificial neural network models and ARIMA models, daily demand forecasts were made. Then, according to MSE performance evaluation criteria, the results of the above-mentioned methods were compared. The data were analyzed by MetlabR2016b and Eviews 6 softwares. Results The results of this study indicate the high accuracy of neural network models followed by Arima compared to that calculated in the current profile of IBTO. The average accuracy according to MSE of the two models for platelet types are: O+ (0.0132±0.0048), O- (0.0115 ± 0.0041), A+ (0.0205 ± 0.0043), A- (0.0108 ± 0.0033), B+ (0.0221 ± 0.0086), B- (0.0045 ± 0.0009), AB+ (0.0136 ± 0.0031), AB- (0.0034 ± 0.0005) which represent the mean and standard deviation of the error, respectively. Conclusions The results of this study indicate the high accuracy of artificial neural network models followd by Arima in predicting blood platelet demand. Therefore, using artificial neural network models for prediction of demand is recommended instead of common statistical prediction methods in blood centers. Key words: Blood Platelets, Arima, Blood Transfusion

Authors and Affiliations

F. Firouzi Jahantigh, B. Fanoodi, S. Khosravi

Keywords

Related Articles

Effect of L-carnitine on platelet bacterial contamination and platelet metabolism during 5 days of storage of platelet concentrates

Effect of L-carnitine on platelet bacterial contamination and platelet metabolism during 5 days of storage of platelet concentrates Velashjerdi Z.1, Deyhim M.R.2, Razjou F.2, Eydi A.1 1Science and Research Branch, Is...

شيوع اختلال عملكرد تيروئيد و عوامل مرتبط با آن در بيماران تالاسمي مراجعه كننده <br /> به آزمايشگاه تشخيص طبي سازمان انتقال خون <br />

شيوع اختلال عملكرد تيروئيد و عوامل مرتبط با آن در بيماران تالاسمي مراجعه كننده به آزمايشگاه تشخيص طبي سازمان انتقال خون دكتر فريده جلالي فراهاني1، دكتر سيما ذوالفقاري اناركي2، دكتر علي طالبيان3، دكتر آزيتا آذركيوان...

بررسي انگيزه‌هاي اهداي خون در مراجعين سازمان انتقال خون شيراز طي نيمه اول سال 1383

بررسي انگيزه‌هاي اهداي خون در مراجعين سازمان انتقال خون شيراز طي نيمه اول سال 1383 دكترليلا كسرائيان1 ، دكتر سيد اردشير تراب جهرمي2 چكيده سابقه و هدف براي آماده كردن خون سالم و كافي جهت تأمين نياز بيماران، آگ...

Performance of hospital blood transfusion committees in Tehran (2005-2006)

Performance of hospital blood transfusion committees in Tehran (2005-2006) Hajibeigi B.1,2( MD), Attarchi Z.1,2( MD), Bahaeloo Horeh S.3(MD), Assari Sh.4(MD), Abbasian A.1(BS) 1 Iranian Blood Transfusion Orga...

Download PDF file
  • EP ID EP253102
  • DOI -
  • Views 88
  • Downloads 0

How To Cite

F. Firouzi Jahantigh, B. Fanoodi, S. Khosravi (2018). A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models. Khoon, 14(4), 335-345. https://europub.co.uk/articles/-A-253102