A Dual-Selective Channel Attention Network for Osteoporosis Prediction in Computed Tomography Images of Lumbar Spine
Journal Title: Acadlore Transactions on AI and Machine Learning - Year 2022, Vol 1, Issue 1
Abstract
Osteoporosis is a common systemic bone disease with insidious onset and low treatment efficiency. Once it occurs, it will increase bone fragility and lead to fractures. Computed tomography (CT) is a non-invasive medical examination method that can identify the bone condition of patients. In this paper, we propose a novel channel attention module, which is subsequently integrated into the supervised deep convolutional neural network (DCNN) termed DSNet, which can perform feature fusion from two different scales, and use the method of quadratic weight calculation to enhance the interconnection among feature map channels and improve the detection and classification performance for the bone condition in lumbar spine CT images. To train and test the proposed framework, we retrospectively collect 4805 CT images of 133 patients, using DXA as the gold standard. According to the T-value diagnostic criteria defined by WHO, the vertebral bodies of L1 - L4 in CT images are labeled and classified into osteoporosis, osteopenia and normal bone mineral density. Meanwhile, the training set and test set are constructed in the ratio of 4:1. As a result, the DSNet achieves a prediction accuracy of 83.4% and a recall rate of 90.0% on the test set, indicating that the proposed model has the potential to assist clinicians in diagnosing individuals with abnormal BMD and may alert patients at high risk of osteoporosis for timely treatment.
Authors and Affiliations
Linyan Xue,Ya Hou,Shiwei Wang,Cheng Luo,Zhiyin Xia,Geng Qin,Shuang Liu,Zhongliang Wang,Wenshan Gao,Kun Yang
An Efficient Descriptor-Based Approach for Dominant Point Detection in Shape Contours
Dominant points, or control points, represent areas of high curvature on shape contours and are extensively utilized in the representation of shape outlines. Herein, we introduce a novel, descriptor-based approach for th...
Analysis of Artificial Intelligence and Natural Language Processing Significance as Expert Systems Support for E-Health Using Pre-Train Deep Learning Models
Artificial intelligence (AI) and natural language processing (NLP) are relentless technologies for healthcare that can support a strong and secure digital system with embedded applications of internet of things (IoTs). T...
Robust Leaf Disease Detection Using Complex Fuzzy Sets and HSV-Based Color Segmentation Techniques
Leaf diseases pose a significant threat to global agricultural productivity, impacting both crop yields and quality. Traditional detection methods often rely on expert knowledge, are labor-intensive, and can be time-cons...
Mask Wearing Detection Based on YOLOv5 Target Detection Algorithm under COVID-19
Deep learning methods have been widely used in object detection in recent years as a result of advancements in artificial intelligence algorithms and hardware computing capacity. In light of the drawbacks of current manu...
Detecting False Data Injection Attacks in Industrial Internet of Things Using an Optimized Bidirectional Gated Recurrent Unit-Swarm Optimization Algorithm Model
The rapid adoption of the Industrial Internet of Things (IIoT) paradigm has left systems vulnerable due to insufficient security measures. False data injection attacks (FDIAs) present a significant security concern in II...