A Machine Vision System for Quality Inspection of Pine Nuts
Journal Title: International Journal of Advanced Computer Science & Applications - Year 2016, Vol 7, Issue 9
Abstract
Computers and artificial intelligence have penetrated in the food industry since last decade, for intellectual automatic processing and packaging in general, and in assisting for quality inspection of the food itself in particular. The food quality assessment task becomes more challenging when it is about harmless internal examination of the ingredient, and even more when its size is also minute. In this article, a method for automatic detection, extraction and classification of raw food item is presented using x-ray image data of pine nuts. Image processing techniques are employed in developing an efficient method for automatic detection and then extraction of individual ingredient, from the source x-ray image which comprises bunch of nuts in a single frame. For data representation, statistical texture analysis is carried out and attributes are calculated from each of the sample image on the global level as features. In addition co-occurrence matrices are computed from images with four different offsets, and hence more features are extracted by using them. To find fewer meaningful characteristics, all the calculated features are organized in several combinations and then tested. Seventy percent of image data is used for training and 15% each for cross-validation and test purposes. Binary classification is performed using two state-of-the-art non-linear classifiers: Artificial Neural Network (ANN) and Support Vector Machines (SVM). Performance is evaluated in terms of classification accuracy, specificity and sensitivity. ANN classifier showed 87.6% accuracy with correct recognition rate of healthy nuts and unhealthy nuts as 94% and 62% respectively. SVM classifier produced the similar accuracy achieving 86.3% specificity and 89.2% sensitivity rate. The results obtained are unique itself in terms of ingredient and promising relatively. It is also found that feature set size can be reduced up to 57% by compromising 3.5% accuracy, in combination with any of the tested classifiers.
Authors and Affiliations
Ikramullah Khosa, Eros Pasero
Simulation and Analysis of Quality of Service (QoS) Parameters of Voice over IP (VoIP) Traffic through Heterogeneous Networks
Identifying those causes and parameters that affect the Quality of Service (QoS) of Voice-over-Internet Protocol (VoIP) through heterogeneous networks such as WiFi, WiMAX and between them are carried out using the OPNET...
Minimization of Call Blocking Probability using Mobile Node velocity
Due to rapid growth in IEEE 802.11 based Wireless Local Area Networks (WLAN), handoff has become a burning issue. A mobile Node (MN) requires handoff when it travels out of the coverage area of its current access point (...
Size Reduction and Performance Enhancement of Pi Shaped Patch Antenna using Superstrate Configuration
Patch antennas are modern elements of today’s world communication technology. They appear to have unique characteristics and features with their unique power with handling capabilities and lighted structure. This paper f...
Construction of FuzzyFind Dictionary using Golay Coding Transformation for Searching Applications
searching through a large volume of data is very critical for companies, scientists, and searching engines applications due to time complexity and memory complexity. In this paper, a new technique of generating FuzzyFind...
Personalized E-Learning Recommender System using Multimedia Data
Due to the huge amounts of online learning materials, e-learning environments are becoming very popular as means of delivering lectures. One of the most common e-learning challenges is how to recommend quality learning m...