A Molecular Dynamics Study on the Buckling Analysis of Functionalized Graphene with Nylon 6,6 in Aqueous Environment

Journal Title: Aerospace Mechanics - Year 2023, Vol 19, Issue 4

Abstract

In this research, the buckling behavior of covalently functionalized graphene with nylon 6,6 in vacuum and aqueous environments is investigated employing the molecular dynamics (MD) simulations. The critical buckling force and strain of functionalized graphene are computed and the effects of weight percentage, different distribution patterns and attachment configurations on these values are investigated. Graphene is demonstrated to have very small critical strain and force. By covalent functionalization, the critical force of functionalized graphene increases which is more considerable in the presence of water molecules. Moreover, it is found out that critical strain is not as sensitive as critical force to the presence of water molecules. Also, by increasing the weight percentage of functional groups, the critical force increases. By contrast, the critical strain reduces by functionalization and the critical strain of functionalized graphene reduces as the weight percentage increases.  The results of this study can be used as the benchmark for the graphene-based nanocomposites.

Authors and Affiliations

Shahram Ajori,Fatemeh Sadeghi,

Keywords

Related Articles

Robust Control Based on Suboptimal Estimator for Highly Nonlinear Robotic Arms Influenced Model Uncertainties and Environmental Disturbance

One of the main challenges of using robotic arms in various industrial applications such as: production and assembly line, medical and surgical centers, space industries and military instruments is the lack of accurate m...

Design and Experimental Implementation of an Adaptive Feedback Linearization Controller Based on Extended State Observer for a Flexible-joint Arm

This study deals with the design and experimental implementation of an adaptive feedback linearization controller for a flexible joint lever-arm (FJLA) in the presence of uncertainties and external disturbances. An exten...

Thermodynamic Simulation of Fouling and Erosion in an Industrial Gas Turbine for Power Generation Applications

In this research, the performance deterioration caused by the degradation of the main gas path components is simulated for the IGT25 industrial gas turbine. To this aim, after developing a thermodynamic model of IGT25 an...

Experimental Study on the Effect of Adding Multi-walled Carbon Nanotubes on the Ballistic Limit of Fibers Metal Laminates

In this paper, the effect of multi-walled carbon nanotubes (MWCNTs) on the ballistic limit of fibers metal laminates (FML) Exprimentaly investigated. For this purpose, the MWCNTs were added with weight percentages of 0.2...

Analysis and Comparison of Linear, Feedback Linearized and Backstepping Controllers Based on Quaternion in Spacecraft Attitude Control

In this paper, the attitude control design and analysis of a spacecraft as a rigid body based on three controllers of linear, nonlinear based on feedback linearization and backstepping is presented. According to the glob...

Download PDF file
  • EP ID EP731047
  • DOI -
  • Views 61
  • Downloads 2

How To Cite

Shahram Ajori, Fatemeh Sadeghi, (2023). A Molecular Dynamics Study on the Buckling Analysis of Functionalized Graphene with Nylon 6,6 in Aqueous Environment. Aerospace Mechanics, 19(4), -. https://europub.co.uk/articles/-A-731047