A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network
Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone with favourable biocompatibility. However, natural grade PEEK-OPTIMA has shown insufficient bioactivity and limited bone integration. Bioactive PEEK composites (e.g., PEEK/calcium phosphates or Bioglass) and porous PEEK have been used to improve bone-implant interface of PEEK-based devices, but the bioactive phase distribution or porosity control is poor. In this paper, a novel method is developed to fabricate a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the HA (bioactive phase) distribution is computer-controlled within a PEEK matrix. This novel process results in complete interconnectivity of the HA network within a composite material, representing a superior advantage over alternative forms of product. The technique combines extrusion freeforming, a type of additive manufacturing (AM), and compression moulding. Compression moulding parameters, including pressure, temperature, dwelling time, and loading method together with HA microstructure were optimized by experimentation for successful biocomposite production. PEEK/HA composites with a range of HA were produced using static pressure loading to minimise air entrapment within PEEK matrix. In addition, the technique can also be employed to produce porous PEEK structures with controlled pore size and distribution.
Authors and Affiliations
Mohammad Vaezi and Shoufeng Yang
Uncovering 3D bioprinting research trends: A keyword network mapping analysis
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000...
Near-field electrospinning of a polymer/bioactive glass composite to fabricate 3D biomimetic structures
Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioac...
Bioprinting of osteochondral tissues: A perspective on current gaps and future trends
Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold stan...
3D bioprinting for tissue engineering: Stem cells in hydrogels
Surgical limitations require alternative methods of repairing and replacing diseased and damaged tissue. Regenerative medicine is a growing area of research with engineered tissues already being used successfully in pati...
Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries
Tissue engineering is a promising technology in the field of regenerative medicine with its potential to create tissues de novo. Though there has been a good progress in this field so far, there still exists the challeng...