A robust adaptive control of interleaved boost converter with power factor correction in wind energy systems

Abstract

Power converters are generally utilized to convert the power from the wind sources to match the load demand and grid requirement to improve the dynamic and steady-state characteristics of wind generation systems and to integrate the energy storage system to solve the challenge of the discontinuous character of the renewable energy. In the low-voltage wind energy systems, interleaved boost converters (IBC) are often used to operate high currents in the system. IBCs are extremely sensitive to the constantly changing loading conditions. These situations require a robust control operation which can ensure a sufficient performance of the IBC over a large-scale changing load. Neural networks (NN) have emerged over the years and have found applications in many engineering fields, including control. In this paper, the adaptive control of interleaved boost converter with power factor correction (PFC) is investigated for grid-connected synchronous generator of wind energy system. For this purpose, a model reference adaptive control (MRAC) based on NN is proposed. Analysis results show that the proposed control strategy for the IBCs achieves near unity power factor (PF) and low total harmonic distortion (THD) in a wide operating range.

Authors and Affiliations

Fatih Karik| Technology Faculty, Energy Systems Engineering Department, Gazi University, Ankara, Turkey, Ceyhun Yildiz| Elbistan Vocational School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey, Fazil Kaytez*| General Directorate of Renewable Energy, Ankara, Turkey

Keywords

Related Articles

Artificial Neural Network Models for Predicting the Energy Consumption of the Process of Crystallization Syrup in Konya Sugar Factory

In this study, artificial neural network models have been developed from the sugar production process stages in Konya Sugar Factory using artificial neural networks to estimate the energy consumption of the process of cr...

Lossless Text Compression Technique with LSB Technique to Hide Secret Message inside an Image (CLSB)

This paper presents CLSB algorithm to improve and increase the security ofhiding message inside an image by using Least Significant Bit (LSB) method. This research attempts to improve the way has been introduced in [1],...

Intrusion Detection Forecasting Using Time Series for Improving Cyber Defence

The strength of time series modeling is generally not used in almost all current intrusion detection and prevention systems. By having time series models, system administrators will be able to better plan resource alloca...

Classification of Neurodegenerative Diseases using Machine Learning Methods

In this study, neurodegenerative diseases (Amyotrophic Lateral Sclerosis, Huntington’s disease, and Parkinson’s disease) were diagnosed and classified using force signals. In the classification, five machine learning al...

Classification of Wheat Types by Artificial Neural Network

In this study, the types of wheat seeds are classified using present data with artificial neural network (ANN) approach. Seven inputs, one hidden layer with 10 neurons and one output has been used for the ANN in our syst...

Download PDF file
  • EP ID EP817
  • DOI 10.18201/ijisae.2017526692
  • Views 490
  • Downloads 25

How To Cite

Fatih Karik, Ceyhun Yildiz, Fazil Kaytez* (2017). A robust adaptive control of interleaved boost converter with power factor correction in wind energy systems. International Journal of Intelligent Systems and Applications in Engineering, 5(1), 22-28. https://europub.co.uk/articles/-A-817