A simple higher order shear deformation theory for mechanical behavior of laminated composite plates

Journal Title: International journal of advanced structural engineering - Year 2016, Vol 8, Issue 2

Abstract

In the present study, the static, buckling, and free vibration of laminated composite plates is examined using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton’s principle. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher order models and with data found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static, the buckling, and free vibration behaviors of laminated composite plates.

Authors and Affiliations

Belkacem Adim, Tahar Hassaine Daouadji, Aberezak Rabahi

Keywords

Related Articles

Prediction of residual shear strength of corroded reinforced concrete beams

With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and fou...

Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario— correlation analysis

The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the availab...

Dynamic response of structure with tuned mass friction damper

The effectiveness of tuned mass friction damper (TMFD) in suppressing the dynamic response of the structure is investigated. The TMFD is a damper which consists of a tuned mass damper (TMD) with linear stiffness and pure...

Bending and free vibration analysis of functionally graded plates using new eight-unknown shear deformation theory by finite-element method

In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite-element method. The theory based on full 12-unknown higher order sh...

Optimal placement of active braces by using PSO algorithm in near- and far-field earthquakes

One of the most important issues in tall buildings is lateral resistance of the load-bearing systems against applied loads such as earthquake, wind and blast. Dual systems comprising core wall systems (single or multi-ce...

Download PDF file
  • EP ID EP210487
  • DOI 10.1007/s40091-016-0109-x
  • Views 116
  • Downloads 0

How To Cite

Belkacem Adim, Tahar Hassaine Daouadji, Aberezak Rabahi (2016). A simple higher order shear deformation theory for mechanical behavior of laminated composite plates. International journal of advanced structural engineering, 8(2), 103-117. https://europub.co.uk/articles/-A-210487