Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate

Abstract

The objective of this work was to solve the problem of non linear time variant multi-input multi-output of greenhouse internal climate for tomato seedlings. Artificial intelligent approaches including neural networks and fuzzy inference have been used widely to model expert behavior. In this paper we proposed the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) as methodology to synthesize a robust greenhouse climate model for prediction of air temperature, air humidity, CO2 concentration and internal radiation during seedlings growth. A set of ten input meteorological and control actuators parameters that have a major impact on the greenhouse climate was chosen to represent the growing process of tomato plants. In this contribution we discussed the construction of an ANFIS system that seeks to provide a linguistic model for the estimation of greenhouse climate from the meteorological data and control actuators during 48 days of seedlings growth embedded in the trained neural network and optimized using the back propagation and the least square algorithm with 500 iterations. The simulation results have shown the efficiency of the proposed model.

Authors and Affiliations

Charaf LACHOURI, Khaled MANSOURI, Mohamed LAFIFI, Aissa BELMEGUENAI

Keywords

Related Articles

MAS based on a Fast and Robust FCM Algorithm for MR Brain Image Segmentation

In the aim of providing sophisticated applications and getting benefits from the advantageous properties of agents, designing agent-based and multi-agent systems has become an important issue that received further consid...

Diabetes Disease Diagnosis Method based on Feature Extraction using K-SVM

Nowadays, diabetes disease is considered one of the key reasons of death among the people in the world. The availability of extensive medical information leads to the search for proper tools to support physicians to diag...

An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers

Bayesian network (BN) classifiers use different structures and different training parameters which leads to diversity in classification decisions. This work empirically shows that building an ensemble of several fine-tun...

Improving Quality of Vietnamese Text Summarization Based on Sentence Compression

Sentence compression is a valuable task in the framework of text summarization. In previous works, the sentence is reduced by removing redundant words or phrases from original sentence and tries to remain information. In...

Analysis of Doppler Effects in Underwater Acoustic Channels using Parabolic Expansion Modeling

Underwater communication systems play an important role in understanding various phenomena that take place within our vast oceans. They can be used as an integral tool in countless applications ranging from environmental...

Download PDF file
  • EP ID EP138460
  • DOI 10.14569/IJACSA.2016.070114
  • Views 105
  • Downloads 0

How To Cite

Charaf LACHOURI, Khaled MANSOURI, Mohamed LAFIFI, Aissa BELMEGUENAI (2016). Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate. International Journal of Advanced Computer Science & Applications, 7(1), 96-100. https://europub.co.uk/articles/-A-138460