ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS

Abstract

In this paper the analysis of k-specified (namely k-means) crisp data partitioning pre-clustering algorithm’s termination criterion performance is described. The results have been analyzed using the clustering validity indices. Termination criterion allows analyzing data with any number of clusters. Moreover, introduced criterion in contrast to the known validity indices enables to analyze data that make up one cluster.

Authors and Affiliations

Volodymyr Mosorov, Taras Panskyi, Sebastian Biedron

Keywords

Related Articles

BIDIRECTIONAL DC/DC CONVERTER BUILT WITH THE USE OF SIC ELEMENTS

The article presents development process of the high frequency DC/DC converter built on the basis of silicon carbide elements. The device has been designed for energy storage applications, as a part of a DC microgri...

ROZWÓJ WYŁADOWANIA ŁUKOWEGO W OSIOWYM POLU MAGNETYCZNYM

Artykuł zawiera opis badań wykonanych w Instytucie Elektrotechniki. Badano dwa rodzajestyków generujących osiowe pole magnetyczne stosowane w komorach wyłącznikówpróżniowych. Badania łuku łączeniowego wykonano rejestrują...

KNOWLEDGE EXTRACTION FROM THE EDDY CURRENT MEASUREMENT DATA

The purpose of this paper is to present methods, dedicated for extract useful patterns from the eddy current measurement data. The paper presents a methodology of knowledge extraction, an association rule learning algori...

DEVELOPMENT ISSUES IN ALGORITHMS FOR SYSTEM LEVEL SELF-DIAGNOSIS

The paper deals with the problem of developing probabilistic algorithm for system level self-diagnosis. The main goal of the suggested algorithm is to minimize the mean time of its executing. The algorithm is based...

NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION

The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the seg...

Download PDF file
  • EP ID EP227006
  • DOI 10.5604/01.3001.0010.5216
  • Views 109
  • Downloads 0

How To Cite

Volodymyr Mosorov, Taras Panskyi, Sebastian Biedron (2017). ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, 7(3), 56-59. https://europub.co.uk/articles/-A-227006