An Ensemble Stacking Algorithm to Improve Model Accuracy in Bankruptcy Prediction
Journal Title: Journal of Data Science and Intelligent Systems - Year 2024, Vol 2, Issue 2
Abstract
Bankruptcy analysis is needed to anticipate bankruptcy. Errors in predicting bankruptcy often cause bankruptcy. Machine learning with high accuracy to analyze reversal must continuously improve its accuracy. Many machine learning models have been applied to predict bankruptcy. However, model improvisation is still needed to improve prediction accuracy. We propose a combination model to improve the accuracy of bankruptcy prediction based on a genetic algorithm-support vector machine (GA-SVM) and stacking ensemble method. This study uses the Taiwanese Bankruptcy dataset from the Taiwan Economic Journal. Then we implement a synthetic minority over-sampling technique for handling imbalanced datasets. We select the best feature using GA-SVM, adopt a new strategy by stacking the classifier, and use extreme gradient boosting as a meta-learner. The results show superior accuracy obtained by the stacking model-based GA-SVM with an accuracy of 99.58%. The accuracy obtained is higher than just applying a single classifier. Thus, this study shows that the proposed method can predict bankruptcy with superior accuracy.
Authors and Affiliations
Much Aziz Muslim, Yosza Dasril, Haseeb Javed, Alamsyah, Jumanto, Wiena Faqih Abror, Dwika Ananda Agustina Pertiwi, Tanzilal Mustaqim
Analytic Network Process (ANP) Method: A Comprehensive Review of Applications, Advantages, and Limitations
Nowadays, multi-criteria decision-making (MCDM) methods possess manifold applications in many areas from engineering to supply chain and management. The analytic network process (ANP) method is one of the most widely use...
Performance Metrics of an Intrusion Detection System Through Window-Based Deep Learning Models
Intrusion and prevention technologies perform reliably in harsh conditions by fortifying many of the world's highest security sites with few defects in high performance. This paper aims to contribute by designing an intr...
Identifying Risk Factors for Heart Failure: A Case Study Employing Data Mining Algorithms
Heart diseases are increasingly present in the lives of human beings and are diseases that affect the heart and blood vessels and can lead the person who develops to death. In this article, we analyzed an open and public...
Multiple Regression Model as Interpolation Through the Points of Weighted Means
A well-known property of the multiple linear regression is that its plane goes through the point of the mean values of all variables, and this feature can be used to find the model's intercept. This work shows that a re...
Intra-annual National Statistical Accounts Based on Machine Learning Algorithm
The methods used for forecasting financial series are based on the concept that a pattern can be identified in the data and distinguished from randomness by smoothing past values. This smoothing process eliminates random...