An equivalent single-phase flow for oil-water two-phase flow and its potential application in well test
Journal Title: Advances in Geo-Energy Research - Year 2018, Vol 2, Issue 2
Abstract
In this work an equivalent single-phase flow model is proposed based on the oil-water two-phase flow equation with saturation-dependent parameters such as equivalent viscosity and equivalent formation volume factor. The equivalent viscosity is calculated from the oil-water relative permeability curves and oil-water viscosity. The equivalent formation volume factor is obtained by the fractional flow of the water phase. In the equivalent single-phase flow model, the equivalent viscosity and phase saturation are interdependent when the relative permeability curves are known. Four numerical experiments based on PEBI grids show that equivalent single-phase flow has a good agreement with the oil-water two-phase flow, which shows that the equivalent single-phase flow model can be used to interpret oil-water two-phase pressure data measured in the wellbore during the buildup period. Because numerical solution of single-phase flow model is several times faster than that of the two-phase flow model, whether the new model interprets the pressure data directly or offers good initial values for the true oil-water two-phase pressure data interpretation, it will obviously improve the efficiency of the interpretation of oil-water pressure data and decrease the burden of engineers.
Authors and Affiliations
Wenshu Zha, Daolun Li, Zhiwei Lu, Bao Jia
A new algorithm for computation of horizontal-well pressure in Laplace domain
The effect of wellbore pressure drop on horizontal well pressure response is relatively important when flow velocity is high or the surface of horizontal wellbore is rough. The objective of this study is to develop a sta...
A new model for calculating permeability of natural fractures in dual-porosity reservoir
During the development of naturally fractured carbonate reservoirs, understanding the change in fracture permeability is the basis for production evaluation and scientific development. The conventional method of analyzin...
A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms
It is now commonplace to deploy neural networks and machine-learning algorithms to provide predictions derived from complex systems with multiple underlying variables. This is particularly useful where direct measurement...
A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media
Multiphase flow in porous media is relevant to amount of engineering processes, such as hydrocarbon extraction from reservoir rock, water contamination, CO2 geological storage and sequestration. Pore scale modeling, as a...
Insights on the gas permeability change in porous shale
Due to abundant nanoscale pores developed in shale, gas flow in shale presents a complex dynamic process. This paper summarized the effects from effective stress increase, shale matrix shrinkage, gas slippage and Knudsen...