Analytical and Experimental Draft Force Evaluation of Plastic Coated Chisel Tines
Journal Title: Journal of Agricultural Machinery - Year 2017, Vol 7, Issue 2
Abstract
Introduction Improving the efficiency of all agricultural operations has always been important for farmers and engineers. It is well known that the force required for cutting a soil using narrow blades is a function of soil and environmental physical properties, tool shape geometry and the toolâs surface characteristics like soil-tool adhesion and friction. Soil tool adhesion can reduce ploughing efficiency and quality. It may also halt the movement of tillage machines in more severe conditions. Adhesion can also disable some machine abilities, which can result in a significant reduction of machine performance. Adhesion of the soil to seed-bed preparation tools like furrowers can significantly affect the germination rate. Reducing soil tool adhesion of furrowers can reduce draft force and improve ploughing efficiency. Many researchers have worked on methods of reducing draft force by modifying the surface material and/or surface texture of the plough tools. A good prediction on draft force of a tool before producing it has always been important for farmers and engineers. There are some models for predicting the draft force of narrow blades in soil. McKyes-Aliâs model is widely used because of its accuracy and simplicity. Ultra-high molecular weight polythene (UHMW-PE) is a polymer with ultra-high weight and long molecular chains and is well known for its outstanding physical and chemical properties and self-cleaning abilities, which reduce soil-tool adhesion. The aim of this study was to investigate usability of UHMW-PE coated furrower tines for draft force. Analytical and experimental investigations were carried out during the research. A comparison was conducted between the analytical and the experimental method. The results of this comparison can be used to determine reliability of the analytical model for predicting the draft force improvement caused by the surface modification on tines using different surface coatings. Materials and Methods Eight tines have been built. Four of them had a thick coating layer of UHMW-PE, and the other four were made of pure mild steel. Each set of the tines have been installed on a four shanked chisel plough chassis and then attached to a tractor. The draft force required for pulling the furrowers attached to the tractor has been measured by a simple load meter mechanism connecting two tractors. Draft force has been measured in two different speeds. Slip ratio of the tractor has been recorded. Each test has been repeated three times.McKyes-Aliâs proposed model for evaluating the draft force of narrow blades has been chosen to predict draft force of the traditional steel furrower tines and the surface coated ones. To drive the model, a computer program has been coded in the script environment of Matlab software. The model required some of the mechanical properties of the soil and the tool to operate. Specific gravity, cohesion and internal friction angle of the soil have been measured by routine laboratory methods. Soil-tool adhesion and friction of the mild steel and the UHMW-PE plates have been measured using the direct shear apparatus. Results and Discussions MkKyes-Aliâs model has predicted draft forces with an accuracy of 90%. According to the results of the driven model, applying a UHMW-PE coating layer to the surface of the tines can improve draft force by 13%. The change of tractor speed from 3.5 km h-1 to 5.5 km h-1 have no significant effect on the predicted draft forces. The model also predicted different angles of the soil failure zone for coated and uncoated tines. On the other hand, the improvement of the draft force for the UHMW-PE coated tine in the field test was about 27%. According to The results obtained from the field test, the draft force of the furrower tines had significant correlation with the speed. Conclusion The UHMW-PE coated tines required significantly less draft force to work in compare with the steel tines. McKyes-Aliâs model predicted a significant improvement (13%) in draft force for the UHMW-PE coated tines. According to the experimental results, the improvement of the draft force was about 27%, which was almost twice as predicted. Although the McKyes-Aliâs model could predict an improvement for draft force of the UHMW-PE coated tine, but the actual improvement was about twice of the prediction. According to analytical and experimental results, applying a layer of UHMW-PE plastic on furrower tines can improve the draft force significantly.
Authors and Affiliations
M. Barzegar Tabrizi,S. J. Hashemi,R. Karimi,
Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil
Introduction The compaction of soil by agricultural equipment has become a matter of increasing concern because compaction of arable lands may reduce crop growth and yield, and it also has environmental impacts. In natur...
Feasibility of Drone Imagery for Monitoring Performance of a Modified Drill in a Conservation Farming System
In this paper, performance of a no-till corn planter in a soil covered with previous wheat residue was evaluated. Three levels of crop residue cover (CRC): 30, 45 and 60%, two planting schemes; on-bed and in-furrow and t...
Investigation of Specific Heat and Thermal Conductivity of Rasa Grape (Vitis Vinifera L.) as a Function of Moisture Content
Kurdistan Rasa grape is one of the delicious and sweet fruits with black color. It contains vitamins E, C and some protectors such as antioxidants. In order to design equipments and facilities for drying, preservation an...
Study and Determining Power, Fuel Requirements and Some Soil Physical Properties in Several Tillage Methods
Using the cropping operations program can significantly save fuel consumption and energy efficiency. Prediction of the accurate amount of fuel requirements for tillage operation of the soil is difficult. Changes in humid...
Detection of Cucumber Fruit on Plant Image Using Artificial Neural Network
The main purpose of this study was to provide a method for accurately identifying the position of cucumber fruit in digital images of the greenhouse cucumber plant. After balancing the brightness histogram of the desired...