APPLICATIONS OF SADDLE-POINT DETERMINANTS
Journal Title: Discussiones Mathematicae - General Algebra and Applications - Year 2015, Vol 35, Issue 2
Abstract
For a given square matrix A ∈ Mn(R) and the vector e ∈ (R)^n of ones denote by (A, e) the matrix A e e^T 0 This is often called the saddle point matrix and it plays a significant role in several branches of mathematics. Here we show some applications of it in: game theory and analysis. An application of specific saddle point matrices that are hollow, symmetric, and nonnegative is likewise shown in geometry as a generalization of Heron’s formula to give the volume of a general simplex, as well as a conditions for its existence.
Authors and Affiliations
Jan Hauke, Charles R. Johnson, Tadeusz Ostrowski
GENERALIZED PELL EQUATIONS FOR 2 × 2 MATRICES
In this paper we consider the solutions of the generalized matrix Pell equations X^2 − dY^2 = cI, where X and Y are 2 × 2 matrices over Z, d is a non-zero (positive or negative) square-free integer, c is an arbitrary int...
ALL REGULAR-SOLID VARIETIES OF IDEMPOTENT SEMIRINGS
The lattice of all regular-solid varieties of semirings splits in two complete sublattices: the sublattice of all idempotent regular-solid varieties of semirings and the sublattice of all normal regular-solid varieties o...
Intervals of certain classes of Z-matrices
Let A and B be M-matrices satisfying A ≤ B and J = [A, B] be the set of all matrices C such that A ≤ C ≤ B, where the order is component wise. It is rather well known that if A is an M-matrix and B is an invertible Mmatr...
Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct
Here we introduce the notion of strong quasi k-ideals of a semiring in SL+ and characterize the semirings that are distributive lattices of t-k-simple(tk-Archimedean) subsemirings by their strong quasi k-ideals. A quasi...
INTRODUCING FULLY UP-SEMIGROUPS
In this paper, we introduce some new classes of algebras related to UPalgebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup,...