ARTIFICIAL NEURAL NETWORKS IN FOREIGN EXCHANGE MARKET FORECAST

Abstract

Background. Effective risk management incorporates reduction of firm’s sensitivity to changes in real exchange rates. Thus, author investigates methods of forecasting exchange rates for strategic planning. Research indicates that conventional statistical approaches suffer from unsatisfactory accuracy of forecasts. However, artificial neural networks have proven effective for difficult prediction problems in a variety of domains. Analysis of recent publications in this realm of research has shown that despite significant scientific achievements modern economic conditions pose new challenges for international firms. Hence, tools for projection of operations in foreign currency need to be further investigated. The aim of the article is an experimental justification of satisfactory neural networks accuracy for forecasting exchange rates (i.e. EUR / USD, GBP / USD, USD / JPY, USD / UAH) with daily, monthly and quarterly steps in order to be exploit by enterprises, central banks, and other end-users. Materials and methods. The study employs following methods: comparison, approximation, abstraction as well as graphical and tabular tools. Results. The choice of neural networks as a forecasting method is justified. They are capable to assess dynamics and nonlinearity of financial data better than other known methods. Presented experimental results bear these out. In particular, author uses a multilayered perceptron with a single hidden layer as a neural network model. Forecasting has been implemented with one-step approach where perceptron retrains on every step of experiment. The accuracy level achieved is acceptable for developing measures to manage currency risk. Conclusion. Observed prediction accuracy of neural networks proves their advantages for firm’s management of foreign exchange transactions, selection of the hedging methods and evaluating hedging results, varying the dates of payments in foreign currency, development of the intervention policy of the central bank, etc. Their approximation abilities show the possibility to analyze and consider psychological boundaries and other behavioral factors affecting exchange rates. Integration of fundamental (macroeconomic) data into the experimental model yet represents another interesting area of future research.

Authors and Affiliations

Svitlana GALESCHUK

Keywords

Related Articles

CONSOLIDATING DIPLOMACY IN ECOLOGIZATION OF COMPETITIVE RELATIONS

The article deals with topical issues of forming consolidating diplomacy in greening aspects of competitive relations in conditions of internationalization and globalization of economic interaction space.

ІНСТРУМЕНТИ ІНФОРМАЦІЙНОЇ АСИМЕТРІЇ НА РИНКАХ СПОЖИВЧИХ ТОВАРІВ І ПОСЛУГ

Досліджено поняття інформаційної асиметрії. Проаналізовано її безпосе-редній вплив на ринок споживчих товарів та послуг України. Вказано основні напря-ми та наслідки поширення інформаційної асиметрії.

ЗАХИСТ ПРАВ СПОЖИВАЧІВ В ІНТЕРНЕТ-МАГАЗИНАХ УКРАЇНИ

Розглянуто розвиток електронної торгівлі в Україні. Обґрунтовано необхід-ність вдосконалення сучасної законодавчої бази щодо захисту прав споживачів у сфері електронної торгівлі. Доведено необхідність підвищення поінформ...

ВАЛЮТНІ ІНТЕРВЕНЦІЇ НАЦІОНАЛЬНОГО БАНКУ УКРАЇНИ

Проаналізовано валютні інтервенції Національного банку України (НБУ) за 2015–2017 рр. як інструмент стабілізації обмінного курсу української гривні. Здійснено аналіз обсягів та середньозваженого курсу операцій НБУ з купі...

INNOVATION ECOSYSTEM OF THE UNIVERSITY

Background. The purpose of the article is to reveal the essence and peculiarities of innovative University ecosystems, determine the prerequisites, conditions and mechanisms of their development in Ukraine. The aim of th...

Download PDF file
  • EP ID EP185219
  • DOI -
  • Views 128
  • Downloads 0

How To Cite

Svitlana GALESCHUK (2016). ARTIFICIAL NEURAL NETWORKS IN FOREIGN EXCHANGE MARKET FORECAST. Вісник Київського національного торговельно-економічного університету, 3(107), 101-115. https://europub.co.uk/articles/-A-185219