Asymetryczne przeniesienie wodoru do ketonów katalizowane związkami Rutenu(II) i Rodu(III)
Journal Title: Wiadomości Chemiczne - Year 2012, Vol 66, Issue 3
Abstract
Asymmetric hydrogen transfer (ATH) is one of the methods of stereoselective reduction of prochiral carbonyl compounds (Scheme 6). Complexes of the platinum group metals (Noyori catalysts) are the most common catalysts for AT H reactions. The specific structure of the Noyori catalyst allows to activate two hydrogen atoms. These atoms are transferred from donor to acceptor in the form of hydride ion and proton (Scheme 1). Depending on the used catalyst the transfer hydrogenation of ketons can proceed by direct and indirect transfer mechanism. The direct hydride transfer from a donor to an acceptor proceeds via a six-membered transition state (3) (Scheme 2). The indirect hydride transfer proceeds through the formation of an intermediate metal hydride. A monohydride (HLnMH) and or a dihydride (LnMH2) can be formed depending on the catalyst that is used (Scheme 3). In the monohydride route, the reduction proceeds in the inner sphere of the metal (four-membered transition state (4)) or in the outer sphere of the metal (six-membered transition state (5)) (Scheme 4). The proposed reduction of carbonyl compounds in the AT H reaction by Noyori catalysts uses the mechanism of the hydride ion and proton transfer from the donor to the catalyst and the formation of the monohydride. In the indirect transfer hydrogenation the hydride ion and proton are transferred from the monohydride to the acceptor (Scheme 5, 7). AT H reactions that lead to chiral alcohols are conducted in organic solvents or in water. Hydrogen donors most often used in organic solvent reactions are propan-2-ol or an azeotropic mixture of formic acid and triethylamine (Tab. 1, 6). Sodium formate is usually used as hydrogen donor in the reactions conducted in water. Yield and enantioselectivity of the reaction depend on many factors the most important of which are: the structure of a substrate, hydrogen donor and solvent that were used, the reaction time, substrate concentration, and the S/C ratio [2]. In the case of asymmetric reduction conducted in water the solvent pH is also of great importance [3, 7, 8]. An optimal pH range depends on the type of a catalyst [7, 8]. AT H reactions conducted in water are distinguished by a shorter reaction time and higher enantioselectivity than the reactions conducted in organic solvents. In addition, catalysts used in the AT H reactions are more stable in water allowing reuse of the catalyst without loss of its activity. This paper presented examples of the use of specific catalysts in asymmetric reactions of hydrogen transfer. In particular, I drew attention to the reactions running in the aquatic environment due to the above-mentioned advantages of this solvent. The authors focused specifically on bifunctional catalysts based on Ru(II) and Rh(III) on the account of wide usage of the catalysts of that type in AT H reactions in water and their good performance [8, 9, 15, 16, 17, 19, 20, 21, 22]. p-Cymene is the most common aromatic ligand in catalysts based on Ru(II) while in the case of catalysts with Rh(III) the most common is anionic pentamethylcyclopentadienyl ligand. In both cases the second most common ligands are diamines or amino alcohols (Scheme 8). There are better performance and enantioselectivity when diamines are used as ligands. Attempts to replace diamines and amino alcohols by Schiff bases (Scheme 13) in the catalysts containing Rh(III) proved poor results due to a very low enantioselectivity of conducted reactions (Tab. 7).
Authors and Affiliations
Aleksandra Karczmarska-Wódzka, Renata Kołodziejska, Marcin Wróblewski
Hiperwalentne związki siarki, selenu i telluru. Część 1. Charakterystyka ogólna
The goal of this four-part review is a presentation of the results of recent studies on the properties and chemistry of hypervalent sulfur, selenium and tellurium compounds. The term “hypervalency” has been known since 1...
Biokatalityczne metody otrzymywania nieracemicznych alkoholi aryloallilowych
Different methods for preparing nonracemic arylallylic alcohols are presented in this work. A key feature was an application the biocatalyst as a mean to obtain final products. These compounds play an important role in p...
Nowe metody w badaniach struktur polikryształów
In this chapter, information on good laboratory practice in the field of structural powder diffractometry has been collected. The authors attempt to describe how to plan a measurement, how to find the cell parameters, ho...
Metody chemicznej ligacji w syntezie peptydów i białek. Część 1
Proteins are biological macromolecules affecting very important functions in the body. They are involved in many biochemical processes. They can perform catalytic functions acting as enzymes. They also participate in the...
Inżynieria komórkowa w systemach lab-on-a-chip
Lab-on-a-chip systems are promising tools in the field of cell engineering. Microfluidic systems are integrated microlaboratories consisting of many microstructures such as microchannels and microchambers, which can be u...