Biokatalityczne metody otrzymywania nieracemicznych alkoholi aryloallilowych
Journal Title: Wiadomości Chemiczne - Year 2012, Vol 66, Issue 1
Abstract
Different methods for preparing nonracemic arylallylic alcohols are presented in this work. A key feature was an application the biocatalyst as a mean to obtain final products. These compounds play an important role in pharmaceutical industry, because they are substrates in the synthesis of various important therapeutics [1–3]. Methods presented in this work are divided into five main groups: 1. enantioselective hydroxylation, 2. microbiological deracemization, 3. enzymatic kinetic resolution, 4. enzymatic dynamic kinetic resolution, 5. enantioselective reduction. First two methods use only microorganisms like bacteria [4, 5, 10], fungi [6–8] or yeasts [11] as biocatalysts. Owing to the metabolic processes in the cells it was possible to obtain nonracemic arylallylic alcohol (results for method 2 are presented in Table 1). Unfortunately, the data were insufficient to create direct correlation between values of enantiomeric excess and types of applied microorganisms. Methods 3 and 4 used only isolated enzymes as biocatalysts. They belong to two classes: hydrolases and oxidoreductases. Oxidoreductases were used in the enzymatic kinetic resolution based on the enantioselective oxidation [28] of one enantiomer of the racemic arylallylic alcohol. Nevertheless, hydrolases [12–27], mainly lipases, isolated from microorganisms are enzymes of common use in enzymatic kinetic resolution. Owing to this method it was possible to obtain final products with excellent enantioselectivity (results are presented in Tables 2 and 3). Because kinetic resolution and dynamic kinetic resolution are related processes, in most cases similar enzymes are used. The choice of lipases as biocatalysts for method 4 was caused by the fact that they are able to catalyze enantioselective transesterification of arylallylic alcohols or their acetates. Furthermore, racemization is very important factor for efficacy of dynamic kinetic resolution processes. In most cases they are catalyzed by different types of complexes based on palladium [30, 31] and ruthenium [32, 34]. Final products prepared by this method had very high enantiomeric excesses and yields up to 93% (results are presented in Tables 4 and 5). The only method, presented in this work, that allowed to use both enzymes [39–41] and microorganisms [35–38] as biocatalysts, was enantioselective reduction. This method allows to obtain nonracemic arylallylic alcohols with excellent enantiomeric excess and yields up to 85% (results are presented in Table 6). In summary, all methods presented in this work show the advantages of biocatalysis as an alternative route to traditional chemical method
Authors and Affiliations
Sara Szymkuć, Ryszard Ostaszewski
Fotoaktywne układy polimerowe o rozmiarach nanometrycznych
Sun is the most powerful source of clean, cheap and environmentally friendly source of energy, but still, the usage of this resource cover less than 1% of current world energy requirements [1]. However, nature realizes e...
Syntezy pochodnych układu pirazolo[4,3-c]heterocyklicznego
The broad spectrum of biological activity of pyrazolo[4,3-c]heterocyclic derivatives is the main of reason for the preparation of new compounds containing this scaffold. This review presents most of the literature data o...
Synteza i aktywność biologiczna pochodnych pirolo [3,4-c]pirydyny
Pyrrolo[3,4-c]pyridine is one of the six structural isomers of the bicyclic ring system containing pyrrole moiety condensed with a pyridine nucleus. This review presents most of the literature data about synthetic pyrrol...
Czynniki wpływające na penetrację składników aktywnych przez skórę
This article presents main factors influencing transdermal delivery of active ingredients in cosmetic and pharmaceutical emulsions. The emulsions are widely used as vehicles, because of their excellent solubilizing prope...
Katalizowane cynkiem asymetryczne hydrosililowanie ketonów i imin
One of the fundamental research goals in modern chemistry is the development of efficient and selective procedures to access organic compounds. Among all of the methodologies developed so far, catalysis offers an efficie...