Boundary value problem solution existence for linear integro-differential equations with many delays
Journal Title: Карпатські математичні публікації - Year 2018, Vol 10, Issue 1
Abstract
For the study of boundary value problems for delay differential equations, the contraction mapping principle and topological methods are used to obtain sufficient conditions for the existence of a solution of differential equations with a constant delay. In this paper, the ideas of the contraction mapping principle are used to obtain sufficient conditions for the existence of a solution of linear boundary value problems for integro-differential equations with many variable delays. Smoothness properties of the solutions of such equations are studied and the definition of the boundary value problem solution is proposed. Properties of the variable delays are analyzed and functional space is obtained in which the boundary value problem is equivalent to a special integral equation. Sufficient, simple for practical verification coefficient conditions for the original equation are found under which there exists a unique solution of the boundary value problem.
Authors and Affiliations
I. M. Cherevko, A. B. Dorosh
Periodic words connected with the Fibonacci words
In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of type 2) that are connected with the Fibonacci words and investigated their properties.
Properties of composite positive continuous functions in Cn
The properties of positive continuous functions with Qnb and Q are investigated. We prove that some composite functions with Q belong to class Qnb. A relation between functions with these classes are established.
Coupled fixed point theorems for weakly compatible mappings along with CLR property in Menger metric spaces
Coupled fixed point problems have attracted much attention in recent times. The aim of this paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled mappings in Menger metric space and...
A new criterion for testing hypothesis about the covariance function of the homogeneous and isotropic random field
In this paper, we consider a continuous in mean square homogeneous and isotropic Gaussian random field. A criterion for testing hypotheses about the covariance function of such field using estimates for its norm in the s...
The Bargmann type reduction for some Lax integrable two-dimensional generalization of the relativistic Toda lattice
The possibility of applying the method of reducing upon finite-dimensional invariant subspaces, generated by the eigenvalues of the associated spectral problem, to some two-dimensional generalization of the relativistic...