Boundary value problem solution existence for linear integro-differential equations with many delays
Journal Title: Карпатські математичні публікації - Year 2018, Vol 10, Issue 1
Abstract
For the study of boundary value problems for delay differential equations, the contraction mapping principle and topological methods are used to obtain sufficient conditions for the existence of a solution of differential equations with a constant delay. In this paper, the ideas of the contraction mapping principle are used to obtain sufficient conditions for the existence of a solution of linear boundary value problems for integro-differential equations with many variable delays. Smoothness properties of the solutions of such equations are studied and the definition of the boundary value problem solution is proposed. Properties of the variable delays are analyzed and functional space is obtained in which the boundary value problem is equivalent to a special integral equation. Sufficient, simple for practical verification coefficient conditions for the original equation are found under which there exists a unique solution of the boundary value problem.
Authors and Affiliations
I. M. Cherevko, A. B. Dorosh
Analogues of Whittker's theorem for Laplace-Stieltjes integrals
For the maximum of the integrand of Laplace-Stieltjes integral the lower estimates on sequence are found. Using the estimates we obtained analogues of Whittaker's theorem for entire functions given by lacunary power seri...
Properties of power series of analytic in a bidisc functions of bounded $\mathbf{L}$-index in joint variables
We generalized some criteria of boundedness of $\mathbf{L}$-index in joint variables for analytic in a bidisc functions, where $\mathbf{L}(z)=(l_1(z_1,z_2),$ $l_{2}(z_1,z_2)),$ $l_j:\mathbb{D}^2\to \mathbb{R}_+$ is a co...
Geometry of hypersurfaces of a quarter symmetric non metric connection in a quasi-Sasakian manifold
The purpose of the paper is to study the notion of CR-submanifold and the existence of some structures on a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian manifold. We study the existence o...
On Feller semigroup generated by solution of nonlocal parabolic conjugation problem
The paper deals with the problem of construction of Feller semigroup for one-dimensional inhomogeneous diffusion processes with membrane placed at a point whose position on the real line is determined by a given function...
Application of the functional calculus to solving of infinite dimensional heat equation
In this paper we study infinite dimensional heat equation associated with the Gross Laplacian. Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the space of polynomial ultradi...