Chi-square, Student and Fisher-Snedecor Statistical Distributions and Their Application
Journal Title: Статистика України - Year 2018, Vol 80, Issue 1
Abstract
The Chi-square distribution is the distribution of the sum of squared standard normal deviates. The degree of freedom of the distribution is equal to the number of standard normal deviates being summed. For the first time this distribution was studied by astronomer F. Helmert in connection with Gaussian low of errors in 1876. Later K. Pearson named this function by Chi-square. Therefore Chi –square distribution bears a name of Pearson’s distribution. The Student's t-distribution is any member of a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown. It was developed by W. Gosset in 1908. The Fisher–Snedecor distribution or F-distribution is the ratio of two-chi-squared variates. The F-distribution provides a basis for comparing the ratios of subsetsof these variances associated with different factors. The Fisher-distribution in the analysis of variance is connected with the name of R.Fisher (1924), although Fisher himself used quantity for the dispersion proportion. The Chi-square, Student and Fisher – Snedecor statistical distributions are connected enough tight with normal one. Therefore these distributions are used very extensively in mathematical statistics for interpretation of empirical data. The paper continues ideas of the author’s works [15, 16] devoted to advanced based tools of mathematical statistics. The aim of the work is to generalize the well known theoretical and experimental results of statistical distributions of random values. The Chi-square, Student and Fisher – Snedecor distributions are analyzed from the only point of view. The application peculiarities are determined at the examination of the agree criteria of the empirical sample one with theoretical predictions of general population. The numerical characteristics of these distributions are considered. The theoretical and experimental results are generalized. It is emphasized for the corrected amplification of the Chi-square, Student and Fisher – Snedecor distributions it is necessary to have the reliable empirical and testing data with the normal distribution.
Authors and Affiliations
F. V. Motsnyi
Теоретические основы обеспечения качества информации государственного статистического наблюдения за административными правонарушениями
Рассмотрена проблема формирования теоретических основ обеспечения качества информации государственного статистического наблюдения за административными правонарушениями в Украине. Обоснована необходимость повышения качест...
Социально–экономическая нормаль как индикатор эффективности функционирования сферы услуг
Выполнено оценивание функционирования сферы услуг, проанализированы современные тенденции производства услуг, инвестирования в сферу услуг и численности занятых в этой сфере. Предложено использование социально–экономичес...
Фінансово-статистичний аналіз інвестиційних проектів високотехнологічних наукових розробок на основі вуглецевих наноматеріалів
У роботі вперше поставлено питання про вибір інвестиційних проектів сучасних високотехнологічних наукових розробок на основі вуглецевих наноматеріалів (нанотрубки, нанобатареї, суперконден- сатори, наноакумулятори) з ви...
Комплексная оценка показателей статики, динамики и интенсивности развития регионов Украины за 2015 год
Предложена методика определения рейтинга регионов по показателям статики, динамики и интенсивности социально-экономического развития регионов Украины в 2015 году на основе метода комплексных статистических коэффициентов....
Statistical Study of Factors Influence on Forming of Results of External Independent Evaluation
Statistical study of correlations between socio-economic measures, their forecasting and simulation has important analytical function in statistical science, because enhanced industrial capacities is an important factor...