Classification of Different Wheat Varieties by Using Data Mining Algorithms

Abstract

There are various applications using computer-aided quality controlling system. In this study, seed data set acquired from UCI machine learning database was used. The purpose of the study is to perform the operations for separation of seed species from each other in the seed data set. Three different seed whose data was acquired from the UCI machine learning database was used. Later it was classified by applying the methods of KNN, Naive Bayes, J48 and multilayer perceptron to the dataset. While wheat seed data received from the UCI machine learning database was classified, WEKA program was used. Depending on the number of neurons the highest classification success came in 7-layer neurons. Our success rate for the number of 7-layer neurons came to 97.17% When the classification success rate was calculated according to KNN for the values of different neighbour, the highest success rate for neighbour was set at 95.71% for 4. Neighbour. With this method, classification of seeds depending on their properties was provided more quickly and effectively.

Authors and Affiliations

Kadir Sabanci*| Karamanoglu Mehmetbey University, Faculty of Engineering Department of Electrical and Electronics Engineering, Karaman, Turkey, Mustafa Akkaya| KMU, Faculty of Engineering Department of Energy Systems Engineering, Karaman,Turkey

Keywords

Related Articles

Estimating of Compressive Strength of Concrete with Artificial Neural Network According to Concrete Mixture Ratio and Age

Compressive strength of concrete is one of the most important elements for an existing building and a new structure to be built. While obtaining the desired compressive strength of concrete with an appropriate mix and cu...

Classification of Wheat Types by Artificial Neural Network

In this study, the types of wheat seeds are classified using present data with artificial neural network (ANN) approach. Seven inputs, one hidden layer with 10 neurons and one output has been used for the ANN in our syst...

PID Parameters Prediction Using Neural Network for A Linear Quarter Car Suspension Control

Providing control for suspension systems in vehicles is an enhancing factor for comfort and safety. With the improvement of control conditions, it is possible to design a cost-efficient controller which will maintain opt...

New Approach in E-mail Based Text Steganography

In this study combination of lossless compression techniques and Vigenere cipher was used in text steganography that makes use of email addresses to be the keys to reconstruct the secret message which has been embedded i...

A Fuzzy Logic Controller with Tuning Output Scaling Factor for Induction Motor Control Taking Core Loss into Account

This paper presents a design of a fuzzy logic controller (FLC) with tuning output scaling factor for speed control of indirect field oriented induction motor (IM) taking core loss into account. The variation of output sc...

Download PDF file
  • EP ID EP797
  • DOI 10.18201/ijisae.62843
  • Views 421
  • Downloads 23

How To Cite

Kadir Sabanci*, Mustafa Akkaya (2016). Classification of Different Wheat Varieties by Using Data Mining Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(2), 40-44. https://europub.co.uk/articles/-A-797