Classification of Different Wheat Varieties by Using Data Mining Algorithms

Abstract

There are various applications using computer-aided quality controlling system. In this study, seed data set acquired from UCI machine learning database was used. The purpose of the study is to perform the operations for separation of seed species from each other in the seed data set. Three different seed whose data was acquired from the UCI machine learning database was used. Later it was classified by applying the methods of KNN, Naive Bayes, J48 and multilayer perceptron to the dataset. While wheat seed data received from the UCI machine learning database was classified, WEKA program was used. Depending on the number of neurons the highest classification success came in 7-layer neurons. Our success rate for the number of 7-layer neurons came to 97.17% When the classification success rate was calculated according to KNN for the values of different neighbour, the highest success rate for neighbour was set at 95.71% for 4. Neighbour. With this method, classification of seeds depending on their properties was provided more quickly and effectively.

Authors and Affiliations

Kadir Sabanci*| Karamanoglu Mehmetbey University, Faculty of Engineering Department of Electrical and Electronics Engineering, Karaman, Turkey, Mustafa Akkaya| KMU, Faculty of Engineering Department of Energy Systems Engineering, Karaman,Turkey

Keywords

Related Articles

Adaptive Control Solution for a Class of MIMO Uncertain Underactuated Systems with Saturating Inputs

This paper addresses the issue of controller design for a class of multi-input multi-output (MIMO) uncertain underactuated systems with saturating inputs. A systematic controller framework, composed of a hierarchically g...

About a discussion ‘‘Development a new mutation operator to solve the Traveling Salesman Problem by aid of genetic algorithms’’, by Murat Albayrak and Novruz Allahverdi, 2011. Expert System with Applications, 38; 3, pp. 1313–1320.

In the Short Communication published in “Expert Systems with Application” in volume 41 2014, (Comments on "Albayrak, M., & Allahverdi N. (2011). Development a new mutation operator to solve the Traveling Salesman Problem...

PID Parameters Prediction Using Neural Network for A Linear Quarter Car Suspension Control

Providing control for suspension systems in vehicles is an enhancing factor for comfort and safety. With the improvement of control conditions, it is possible to design a cost-efficient controller which will maintain opt...

Banknote Classification Using Artificial Neural Network Approach

In this study, clustering process has been performed using artificial neural network (ANN) approach on the pictures belonging to our dataset to determine if the banknotes are genuine or counterfeit. Four input parameter...

Application of ANN Modelling of Fire Door Resistance

Fire doors are compulsorily used in every kind of building nowadays. The determination of fire doors’ resistance in which kind of buildings is also essential. This determination is needed to be watched through the experi...

Download PDF file
  • EP ID EP797
  • DOI 10.18201/ijisae.62843
  • Views 425
  • Downloads 23

How To Cite

Kadir Sabanci*, Mustafa Akkaya (2016). Classification of Different Wheat Varieties by Using Data Mining Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(2), 40-44. https://europub.co.uk/articles/-A-797