Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs
Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 1
Abstract
Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print cell-laden 3D structures simultaneously with high resolution and high cell viability. Here a coaxial nozzle-assisted electrohydrodynamic cell printing strategy was developed to fabricate living 3D cell-laden constructs. Critical process parameters such as feeding rate and stage moving speed were evaluated to achieve smaller hydrogel filaments. The effect of CaCl2 feeding rate on the printing of 3D alginate hydrogel constructs was also investigated. The results indicated that the presented strategy can print 3D hydrogel structures with relatively uniform filament dimension (about 80 μm) and cell distribution. The viability of the encapsulated cells was over 90%. We envision that the coaxial nozzle-assisted electrohydrodynamic printing will become a promising cell printing strategy to advance biomedical innovations.
Authors and Affiliations
Hongtao Liang, Jiankang He, Jinke Chang, Bing Zhang, Dichen Li
3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering
A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to i...
Producing hip implants of titanium alloys by additive manufacturing
Additive manufacturing (AM) technologies, in particular Selective Laser Melting (SLM) allows the production of complex-shaped individual implants from titanium alloys with high biocompatibility, mechanical properties, an...
Graphene Oxide Induces Ester Bonds Hydrolysis of Poly-l-lactic Acid Scaffold to Accelerate Degradation
Poly-l-lactic acid (PLLA) possesses good biocompatibility and bioabsorbability as scaffold material, while slow degradation rate limits its application in bone tissue engineering. In this study, graphene oxide (GO) was i...
New microorganism isolation techniques with emphasis on laser printing
The study of biodiversity, growth, development, and metabolism of cultivated microorganisms is an integral part of modern microbiological, biotechnological, and medical research. Such studies require the development of n...
Three-dimensional-printing for microfluidics or the other way around?
As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devices becomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible t...