Comparative Analysis of Mortality Predictions from Lassa Fever in Nigeria: A Study Using Count Regression and Machine Learning Methods
Journal Title: Acadlore Transactions on AI and Machine Learning - Year 2023, Vol 2, Issue 4
Abstract
In Sub-Saharan Africa, particularly in Nigeria, Lassa fever poses a significant infectious disease threat. This investigation employed count regression and machine learning techniques to model mortality rates associated with confirmed Lassa fever cases. Utilizing weekly data from January 7, 2018, to April 2, 2023, provided by the Nigeria Centre for Disease Control (NCDC), an analytical comparison between these methods was conducted. Overdispersion was indicated (p<0.01), prompting the exclusive use of negative binomial and generalized negative binomial regression models. Machine learning algorithms, specifically medium Gaussian support vector machine (MGSVM), ensemble boosted trees, ensemble bagged trees, and exponential Gaussian Process Regression (GPR), were applied, with 80% of the data allocated for training and the remaining 20% for testing. The efficacy of these methods was evaluated using the coefficients of determination (R²) and the root mean square error (RMSE). Descriptive statistics revealed a total of 30,461 confirmed cases, 4,745 suspected cases, and 772 confirmed fatalities attributable to Lassa fever during the study period. The negative binomial regression model demonstrated superior performance (R²=0.1864, RMSE=4.33) relative to the generalized negative binomial model (R²=0.1915, RMSE=18.2425). However, machine learning algorithms surpassed the count regression models in predictive capability, with ensemble boosted trees emerging as the most effective (R²=0.85, RMSE=1.5994). Analysis also identified the number of confirmed cases as having a significant positive correlation with mortality rates (r=0.885, p<0.01). The findings underscore the importance of promoting community hygiene practices, such as preventing rodent intrusion and securing food storage, to mitigate the transmission and consequent fatalities of Lassa fever.
Authors and Affiliations
Timothy Kayode Samson,Tosin Akingbade,Jesutomi Orija
Information Acquisition Method of Tomato Plug Seedlings Based on Cycle-Consistent Adversarial Network
In order to solve the interference caused by the overlapping and extrusion of adjacent plug seedlings, accurately obtain the information of tomato plug seedlings, and improve the transplanting effect of automatic tomato...
Robust Leaf Disease Detection Using Complex Fuzzy Sets and HSV-Based Color Segmentation Techniques
Leaf diseases pose a significant threat to global agricultural productivity, impacting both crop yields and quality. Traditional detection methods often rely on expert knowledge, are labor-intensive, and can be time-cons...
An Efficient Descriptor-Based Approach for Dominant Point Detection in Shape Contours
Dominant points, or control points, represent areas of high curvature on shape contours and are extensively utilized in the representation of shape outlines. Herein, we introduce a novel, descriptor-based approach for th...
Adaptive Lane Keeping Assistance System with Integrated Driver Intent and Lane Departure Warning
The development of an adaptive Lane Keeping Assistance System (LKAS) is presented, focusing on enhancing vehicular lateral stability and alleviating driver workload. Traditional LKAS with static parameters struggle to ac...
A Stable Region-Based Image Segmentation Model Integrating Fuzzy Logic and Geometric Principles
Image segmentation remains a foundational task in computer vision, remote sensing, medical imaging, and object detection, serving as a critical step in delineating object boundaries and extracting meaningful regions from...