Comparison Of The Expression Of MiR-326 Between Interferon Beta Responders And Non-Responders In Relapsing-Remitting Multiple Sclerosis
Journal Title: Cell Journal(Yakhteh) - Year 2020, Vol 22, Issue 1
Abstract
Objective Multiple sclerosis (MS) is an inflammatory disease resulting in demyelination of the central nervous system (CNS). T helper 17 (Th17) subset protects the human body against pathogens and induces neuroinflammation, which leads to neurodegeneration. MicroRNAs (miRNAs) are a specific class of small (~22 nt) non-coding RNAs that act as post-transcriptional regulators. The expression of the miR-326 is highly associated with the pathogenesis of MS disease in patients through the promotion of Th17 development. Recently, studies showed that disease-modifying therapies (DMTs) could balance the dysregulation of miRNAs in the immune cells of patients with relapsing-remitting MS (RRMS). Interferon-beta (IFN-β) has emerged as one of the most common drugs for the treatment of RR-MS patients. The purpose of this study was to evaluate the expression of the miR-326 in RRMS patients who were responders and non- responders to IFN-β treatment. Materials And Methods In this cross-sectional study, a total of 70 patients (35 responders and 35 non-responders) were enrolled. We analyzed the expression of the miR-326 in peripheral blood mononuclear cells (PBMCs) of RRMS patients at least one year after the initiation of IFN-β therapy. Real-time polymerase chain reaction (RT-PCR) was applied to measure the expression of the miR-326. Results The results showed no substantial change in the expression of the miR-326 between responders and non- responders concerning the treatment with IFN-β. Although the expression of the miR-326 was slightly reduced in IFN-β-responders compared with IFN-β-non-responders; however, the reduction of the miR-326 was not statistically significant. Conclusion Overall, since IFN-β doesn’t normalize abnormal expression of miR-326, this might suggest that IFN-β affects Th17 development through epigenetic mechanisms other than miR-326 regulation.
Authors and Affiliations
Mahtab Fattahi, Nahid Eskandari, Fattah Sotoodehnejadnematalahi, Vahid Shaygannejad, Kazemi Mohammad
Nanoceria Attenuated High Glucose-Induced Oxidative Damage in HepG2 Cells
Objective Hyperglycemia, a common metabolic disorder in diabetes, can lead to oxidative damage. The use of antioxidants can benefit the control and prevention of diabetes side effects. This study aims to evaluate the eff...
The Protein Extract of Chlorella minutissima Inhibits The Expression of MMP-1, MMP-2 and MMP-9 in Cancer Cells through Upregulation of TIMP-3 and Down Regulation of c-Jun
Objective: Considering the bioactivities exhibited by microalgae, the effect of protein extract of Chlorella minutissimma (CP extract) was investigated on the expression of human matrix metalloproteinases-1 (MMP-1) in th...
Molecular Aspects of Bone Resorption in β-Thalassemia Major
β-thalassemia is the most common single gene disorder worldwide, in which hemoglobin β-chain production is decreased. Today, the life expectancy of thalassemic patients is increased because of a variety of treatment meth...
The Effects of De-Whiskering and Congenital Hypothyroidism on The Development of Nitrergic Neurons in Rat Primary Somatosensory and Motor Cortices
Objective: The aim of the present study is to investigate the effects of chronic whisker deprivation on possible alterations to the development of nitrergic neurons in the whisker part of the somatosensory (wS1) and moto...
Histopathological Analysis from Gallic Acid Administration on Hippocampal Cell Density, Depression, and Anxiety Related Behaviors in A Trimethyltin Intoxication Model
Objective The present study investigated the effects of gallic acid (GA) administration on trimethyltin chloride (TMT) induced anxiety, depression, and hippocampal neurodegen- eration in rats. Materials and Methods In t...