Comparison of The Therapeutic Effect of Syngeneic, Allogeneic, and Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Abortion Rates in A Mouse Model

Journal Title: Cell Journal(Yakhteh) - Year 2019, Vol 21, Issue 1

Abstract

Objective Mesenchymal stem cells (MSCs), due to their immunomodulatory functions, are an ideal candidate for the treatment of immune-related diseases. Recurrent spontaneous abortion (RSA) is one of the most common complications of pregnancy which in many cases is related to the immune system disorders. Our previous study has shown that the abortion rate was decreased following the syngeneic MSCs therapy in abortion-prone mice. In this study, the therapeutic effect of syngeneic, allogeneic, and xenogeneic MSCs was compared in a mouse model of RSA. Materials and Methods In this experimental study, MSCs were isolated from adipose tissue (ASCs) of CBA/J and BALB/c mice and human. After characterization, ASCs were injected (IP) at day 4 of gestation to female CBA/J mice following their mating with DBA/2 male mice. In the control group, phosphate-buffered saline (PBS) was injected and CBA/J×BALB/c mating was also used as the normal pregnancy control. On day 14.5 of pregnancy, embryo resorption rate was determined. Results The abortion rate significantly decreased following the ASCs therapy from syngeneic (6.31%), allogeneic (6.54%), and xenogeneic group (12.36%) compared to ASCs non-treated group (34.4%). There was no statistical difference between ASCs treated groups, however syngeneic and allogeneic ASCs reduced the abortion rate more efficiently than xenogeneic ASC. Conclusion The abortion rate was significantly decreased following the intraperitoneal administration of ASCs from various donated sources in abortion-prone mice. These results indicated that the immunogenicity of allogeneic and xenogeneic ASCs is not a contradictory problem for their therapeutic effects on RSA.

Authors and Affiliations

Fatemeh Rezaei, Seyed Mohammad Moazzeni

Keywords

Related Articles

Ameliorating Effect of Ginseng on Epididymo-Orchitis Inducing Alterations in Sperm Quality and Spermatogenic Cells Apoptosis following Infection by Uropathogenic Escherichia coli in Rats

Objective Epididymo-orchitis (EO) potentially results in reduced fertility in up to 60% of affected patients. The anti-inflammatory effects of Korean red ginseng (KRG) and its ability to act as an immunoenhancer in paral...

Morphological and Molecular Aspects of In Vitro Culture of Preantral Follicles Derived from Vitrified Ovarian Tissues Using A Two-Step Culture

Objective: This study aimed to evaluate the expression of the genes related to folliculogenesis after vitrification of mouse ovarian tissues using a two-step in vitro culture. Materials and Methods: In this experimental...

Direct Coculture of Human Chondrocytes and Synovium-Derived Stem Cells Enhances In Vitro Chondrogenesis

Objective: Coculture of chondrocytes and mesenchymal stem cells (MSCs) has been developed as a strategy to overcome the dedifferentiation of chondrocytes during in vitro expansion in autologous chondrocyte transplantatio...

Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia

Objective: Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein...

Down-Regulation of miR-200c and Up-Regulation of miR-30c Target both Stemness and Metastasis Genes in Breast Cancer

Objective: microRNAs (miRNAs) play important role in progression of tumorigenesis. They can target self-renewal and epithelial-mesenchymal transition (EMT) abilities in tumor cells, especially in cancer stem cells (CSCs)...

Download PDF file
  • EP ID EP461512
  • DOI 10.22074/cellj.2019.5954
  • Views 271
  • Downloads 0

How To Cite

Fatemeh Rezaei, Seyed Mohammad Moazzeni (2019). Comparison of The Therapeutic Effect of Syngeneic, Allogeneic, and Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Abortion Rates in A Mouse Model. Cell Journal(Yakhteh), 21(1), 92-98. https://europub.co.uk/articles/-A-461512