Computational Fluid Dynamics Analysis of Vertical Axis Wind Turbine Heights for Enhanced Hydrogen Production in Urban Environments
Journal Title: Journal of Intelligent Systems and Control - Year 2023, Vol 2, Issue 3
Abstract
A significant surge in the installation of Vertical Axis Wind Turbines (VAWTs) in areas of spatial constraints and fluctuating wind directions has been observed, attributable to the omission of a yaw mechanism, which otherwise would require orientation towards wind direction. Among VAWTs, the Savonius variant, characterized by an S-shaped rotor, assumes a particular interest due to its operational advantages in the drag-based regime and its self-starting capability. Given their ability to generate electricity under low-wind-speed conditions, these turbines are markedly suited for urban locales. This investigation deploys Computational Fluid Dynamics (CFD) analysis, utilizing ANSYS CFX software, on VAWTs of varying blade heights, facilitating the measurement of torque generation under distinct air velocities. The wind turbine models for this analysis were designed using Creo software. Concurrently, an exploration into the feasibility of VAWTs for hydrogen production through electrolysis is undertaken using analytical methods. Results highlight the substantial influence of turbine height on power generation, which subsequently has direct repercussions on hydrogen production efficiency via the electrolyzer. A 600 mm height VAWT yielded the maximum hydrogen production of 1.05 kg, whereas an 800 mm height VAWT resulted in the minimum production of 0.339 kg. The research findings underscore the potential of VAWTs in hydrogen generation, emphasizing the critical role of wind turbine design optimization in augmenting power generation and, thus, hydrogen production.
Authors and Affiliations
Mthembu Linda, Abhishek Agarwal, Pramod Sinha
Enhanced Interval State Estimation for Uncertain Systems
The quality of state estimation in uncertain systems exerts a significant impact on the performance of control systems. Within these uncertain systems, set-valued mappings introduce output uncertainties, complicating the...
Robust Speed Control in Nonlinear Electric Vehicles Using H-Infinity Control and the LMI Approach
In this investigation, the robust H∞ control of nonlinear electric vehicles (EVs), powered by permanent magnet synchronous motors (PMSM), was examined. Emphasis was placed on enhancing the accuracy and robustness of the...
Characterization of the Direct Current Micromotor by Simscape
Direct current (DC) micromotors play a key role in micro robotic systems. The DC micromotor has a large market demand but there is a lack of theoretical research for it. The DC micromotor is still usable in many applicat...
A Few Maclaurin Symmetric Mean Aggregation Operators for Spherical Fuzzy Numbers Based on Schweizer-Sklar Operations and Their Use in Artificial Intelligence
One significant benefit of the Maclaurin symmetric mean (MSM) is that it is a generalization of many extend operators and can consider the interrelationships among the multi-input arguments, such as multi-attributes or m...
Evaluation of the Accuracy and Consistency of Variable Reluctance Sensors for Turbine Speed Monitoring in Steam Turbine Generator 1.0 at Tambak Lorok CCPP
Accurate monitoring of turbine speed is essential for ensuring operational stability and efficiency in power generation systems, particularly within the context of low-carbon and renewable energy integration. This study...