Design Maximum Power Point Tracking (MPPT) on Photovoltaic Panels using Fuzzy Logic Method
Journal Title: American Journal of Engineering and Applied Sciences - Year 2016, Vol 9, Issue 4
Abstract
Abstract Solar energy is a clean energy, renewable, and available for the long term. The tool used to convert the energy generated from the intensity of sunlight into electricity is photovoltaic panels. However, due to the high cost and low efficiency, the use of the energy is still kind small compared to other types of energy sources. Thus, the need for an effective and flexible models, which resemble the characteristics of the actual photovoltaic (PV), so that we can perform simple manipulation of some data to figure out how to get the maximum performance possible. The characteristic of the solar panel output is specific and non-linear, it depend on the solar irradiation and the temperature of the solar panel. Because of it, it makes us difficult to get the Maximum Power Point (or abbreviated MPP) of the solar panels. Approach: Therefore, to solve these problems required the modeling of the solar panel for design and simulate the algorithms of Maximum Power Point Tracking (MPPT) to maintain the working point of solar panels fixed on the MPP. Overall, the designed system results carried are running well. The increase in the average value of the output voltage by 17%, from an average of 11.6 V before installation into 13.94 V after installation MPPT system. It also occurs in output power with an increase of 28%, from an average of 35.13 W before installing system MPPT into 48.9 W after installation MPPT system. The temperature effect on module voltage and output power before and after installation of the MPPT system that after the installation of the MPPT system, the voltage output of photovoltaic modules can be maintained around the desired maximum value that’s equal to 12 V. But there was a drop in output power value compared to the prior installation MPPT system. This is caused by the output current value that cannot accommodate the value of the output voltage. So that the value of the output current is enough to produce the maximum output power is needed quantities corresponding load. Copyright © 2016 Ahmad Faizal, Sutoyo, Mulyono, Rado Yendra and Ahmad Fudholi. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Authors and Affiliations
Ahmad Faizal, Sutoyo Mulyono, Rado Yendra
Probabilistic Seismic Hazard Deaggregation for Karaj City (Iran)
Abstract In this study the results of PSHA deaggregation for 5%-damped 0.2, 0.5, 2 and 4 s spectral accelerations, corresponding to Mean Return Periods (MRPs) of 50 and 475 yr for Karaj city was presented. The aim of th...
Comparison of Denoising Algorithms for Urban Scenes
Abstract Several new denoising algorithms have recently been presented that display comparable performance and it is unclear which provide the best results. We used the practical example of urban scenes to compare two o...
Comparison in Cover Media under Stegnography: Digital Media by Hide and Seek Approach
Comparison in Cover Media under Stegnography: Digital Media by Hide and Seek Approach Shruti DOI : 10.3844/ajeassp.2016.297.302 American Journal of Engineering and Applied Sciences Volume 9, Issue 2 Pages 297-302 Ab...
Finite-Element Numerical Simulation of the Bending Performance of Post-Tensioned Structural Glass Beams with Adhesively Bonded CFRP Tendons
Abstract In this study, a Finite-Element (FE) numerical investigation is carried out on laminated glass beams with Carbon Fibre Reinforced Polymer (CFRP) adhesively bonded post-tensioning tendons. Taking advantage of pa...
Biodegradation of 2, 4 Dichlorophenol
Abstract The present study focuses on the optimization of process parameters of the aerobic biodegradation of 2, 4 Dichlorophenol (2, 4 DCP) by a commercial strain of P. putida immobilized in PVA gel matrix, using desig...