Detection of Different Percentages of Palm in Corn Oil with the Help of an Electric Nose

Journal Title: Journal of Agricultural Machinery - Year 2023, Vol 13, Issue 2

Abstract

IntroductionThe use of corn oil in diets is due to its positive effects on cardiovascular and immune systems. Corn oil is composed of 99% triacylglycerol, with 59% unsaturated fatty acids and 13% saturated fatty acids. Of the unsaturated fatty acids, 24% contain a double bond. Because of this composition, corn oil can be a good alternative to other oils high in saturated fatty acids, as it reduces blood cholesterol levels.This study employed an electrical nasal system to detect the amount of palm oil present in corn oil. The properties extracted from the signals obtained by the device were processed using principal component analysis, artificial neural networks, infusion, and response surface methods. The results were then compared to find the best method for detecting palm oil levels in corn oil.Materials and Methods The required palm oil was obtained from the Nazgol Oil Agro-industrial Plant, while the corn oil was obtained from natural lubrication centers. To prepare samples with different percentages of palm oil, 75 grams of palm oil and corn oil with the specified percentages were mixed and stored in special containers.In the electrical nose system, ten metal oxide semiconductor sensors (MOS) were used to collect output data. Pre-processing operations were performed on this data using RSM, ANFIS, PCA, and ANN methods to estimate the percentage of palm oil in corn oil. The Unscrambler V.9 software, Design Expert 8.07.1, and MATLAB R2013a were used to analyze the results.Results and DiscussionBased on the Score plot, PC-1 and PC-2 explain 53% and 25%, respectively, describing the variance between samples for a total of 78 data points. The analysis indicates that sensors 7 and 8 have minimal impact on the detection process and can be removed from the sensor array. When reducing the cost of the olfactory system's sensor array, sensor 6 plays a more significant role than other sensors in detecting corn oil with palm composition.According to the loading diagram of palm percentage in corn oil, the MQ6 sensor had the least effect in classifying different percentages of palm in corn oil and pattern identification. Out of all functional parameters (accuracy, sensitivity, and specificity), the RSM method is deemed more appropriate for determining the percentage of palm in corn oil.Regarding the separation of corn oil and palm oil by ANFIS, RSM, and ANN, the results in Table 3-1 indicate that the RSM method is better suited for classifying corn and palm oil.Conclusion In this study, we used an electronic multi-sensor system based on metal oxide sensors to analyze various aromatic compounds in different oil and palm samples and to detect the presence of palm. The system provided comparable information for classifying different samples of palm oils. Using PCA, ANN, ANFIS, and RSM methods, we evaluated the system's performance in differentiating and classifying various oil and palm samples.The results obtained from the loading diagrams for the detection of palm in corn oil indicated that the MQ6 sensor had the least impact on the detection process. Therefore, this sensor can be removed from the sensor array.Additionally, our analysis showed that using the RSM method is more effective in detecting different percentages of palm in corn oil. Overall, our study demonstrates the efficacy of the electronic multi-sensor system in analyzing different oil and palm samples and detecting the presence of palm.

Authors and Affiliations

Z. Zangene Wandi,H. Javadikia,N. Aghili Nategh,L. Naderloo,

Keywords

Related Articles

Effects of Drum Speed and Feed Rate on Damaged Wheat Grain During Threshing Operation

In this research the effects of drum speed and feed rate on the amount of wheat grain damages during threshing operation were investigated. A local flail type threshing machine for threshing wheat at three different drum...

Experimental and Numerical Study of the Moisture Loss Rate in Conditioned Alfalfa Stem using Computational Fluid Dynamics

IntroductionToday, the development of the livestock industry and feed supply is a vital issue due to the growing world population, the importance of animal protein supply, and the growing requirement for livestock produc...

Analysis and Evaluation of Energy, Economic, and Environmental Impact Indicators of Horticultural and Greenhouse Production Systems in Iran using PRISMA Method

IntroductionSo far, many studies have been conducted to evaluate the impact of input consumption patterns on energy, economic, and environmental indicators on horticultural and greenhouse crops in Iran. A review of these...

Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in product...

Evaluating the Efficiency of Sugarcane Harvesting Units Using a Combined Approach to Data Envelopment Analysis and Data Mining

Every organization needs an evaluation system in order to be aware of the level of performance and desirability of its units. It is more important for agricultural companies, including agro-industries. In this study, 20...

Download PDF file
  • EP ID EP718073
  • DOI https://doi.org/10.22067/jam.2021.70930.1046
  • Views 61
  • Downloads 0

How To Cite

Z. Zangene Wandi, H. Javadikia, N. Aghili Nategh, L. Naderloo, (2023). Detection of Different Percentages of Palm in Corn Oil with the Help of an Electric Nose. Journal of Agricultural Machinery, 13(2), -. https://europub.co.uk/articles/-A-718073