Detection of Mass Panic using Internet of Things and Machine Learning

Abstract

The increase of emergency situations that cause mass panic in mass gatherings, such as terrorist attacks, random shooting, stampede, and fires, sheds light on the fact that advancements in technology should contribute in timely detecting and reporting serious crowd abnormal behaviour. The new paradigm of the ‘Internet of Things’ (IoT) can contribute to that. In this study, a method for real-time detection of abnormal crowd behaviour in mass gatherings is proposed. This system is based on advanced wireless connections, wearable sensors and machine learning technologies. It is a new crowdsourcing approach that considers humans themselves as the surveillance devices that exist everywhere. A sufficient number of the event’s attendees are supposed to wear an electronic wristband which contains a heart rate sensor, motion sensors and an assisted-GPS, and has a wireless connection. It detects the abnormal behaviour by detecting heart rate increase and abnormal motion. Due to the unavailability of public bio-dataset on mass panic, dataset of this study was collected from 89 subjects wearing the above-mentioned wristband and generating 1054 data samples. Two types of data collected were: firstly, the data of normal daily activities and secondly, the data of abnormal activities resembling the behaviour of escape panic. Moreover, another abnormal dataset was synthetically generated to simulate panic with limited motion. In our proposed approach, two-phases of data analysis are done. Phase-I is a deep machine learning model that was used to analyze the sensors’ collected readings of the wristband and detect if the person has indeed panicked in order to send alerting signals. While phase-II data analysis takes place in the monitoring server that receives the alerting signals to conclude if it is a mass panic incident or a false positive case. Our experiments demonstrate that the proposed system can offer a reliable, accurate, and fast solution for panic detection. This experiment uses the Hajj pilgrimage as a case study.

Authors and Affiliations

Gehan Yahya Alsalat, Mohammad El-Ramly, Aly Aly Fahmy, Karim Said

Keywords

Related Articles

Quadrant Based WSN Routing Technique By Shifting Of Origin

A sensor is a miniaturized, low powered (basically battery powered), limited storage device which can sense the natural phenomenon or things and convert it into electrical energy or vice versa using transduction process....

Estimating Evapotranspiration using Machine Learning Techniques

The measurement of evapotranspiration is the most important factor in irrigation scheduling. Evapotranspiration means loss of water from the surface of plant and soil. Evaporation parameters are being used in studying wa...

A Tri-Level Industry-Focused Learning Approach for Software Engineering Management

Most engineering classes in higher education rely heavily on the traditional lecture format, despite the fact that a number of investigations have shown that lectures, even when given by good lecturers, have limited succ...

An Algerian dialect: Study and Resources

Arabic is the official language overall Arab coun-tries, it is used for official speech, news-papers, public adminis-tration and school. In Parallel, for everyday communication, non-official talks, songs and movies, Arab...

Towards Securing Medical Documents from Insider Attacks

Medical organizations have sensitive health related documents. Unauthorized access attempts for these should not only be prevented but also detected in order to ensure correct treatment of the patients and to capture the...

Download PDF file
  • EP ID EP316893
  • DOI 10.14569/IJACSA.2018.090542
  • Views 98
  • Downloads 0

How To Cite

Gehan Yahya Alsalat, Mohammad El-Ramly, Aly Aly Fahmy, Karim Said (2018). Detection of Mass Panic using Internet of Things and Machine Learning. International Journal of Advanced Computer Science & Applications, 9(5), 320-329. https://europub.co.uk/articles/-A-316893