DETECTION OF VIOLENCE IN FOOTBALL STADIUM THROUGH BIG DATA FRAMEWORK AND DEEP LEARNING APPROACH

Abstract

Football is the most famous game in the world, with over 4 billion supporters worldwide. Football hooliganism refers to the aggressive or destructive actions of a supporter or player in a stadium while watching or participating in a game. To avoid violence, a real-time violence detection system is required to observe the audience and players behaviour in order to take appropriate action before violence occurs. The input of the system is a massive volume of real-time video feeds from various sources, that are processed using the Flink structure. Using the Histogram of Oriented Gradients (HOG) function in the Flink framework, pictures are partitioned into frames and their characteristics are retrieved. The frames are then labelled on the basis of attributes including Groundside-violence model, Crowdside-violence model, human part model, and Non-violence model, are utilised to train the multihead attention based Bidirectional Long Short-Term Memory network for violent scene detection. The RWF-2000 dataset, which contains the training set (80%) and the test set (20%) was used to train the network and also a dataset comprising 410 video footages with non-violence scenes and 409 video footages with violent situations is created by the videos obtained from a football stadium, to make the algorithm more strong to violence detection. Other existing approaches are used to validate the model's performance. When compared with existing systems, the proposed violence detection methodology significantly increases accuracy upto 1.6453%, precision upto 0.646%, recall upto1.959%, and reduces execution time upto 60% than other existing methods.

Authors and Affiliations

M. Dhipa and D. Anitha

Keywords

Related Articles

EFFICIENT DATA SEARCH AND RETRIEVAL IN CLOUD ASSISTED IOT ENVIRONMENT

Internet of Things (IoT) is expanding across a number of industries, including the medical field. Such a scenario might easily reveal sensitive information, such as private digital medical records, presenting potential s...

BLOCK CHAIN ENABLED DATA SECURITY USING BLOWFISH ALGORITHM IN SMART GRID NETWORK

Smart Grid provides a reliable and efficient end-toend delivery system. Data on each user's unique electricity consumption is given in real time. It also enables utilities to control and monitor the electrical system in...

CHICKEN SWARM OPTIMIZATION BASED ENSEMBLED LEARNING CLASSIFIER FOR BLACK HOLE ATTACK IN WIRELESS SENSOR NETWORK

Wireless Sensor Networks (WSNs) are an inevitable technology prevalently used in various critical and remote monitoring applications. The security of WSNs is compromised by various attacks in wireless mediums. Even thoug...

C-AVPSO: DYNAMIC LOAD BALANCING USING AFRICAN VULTURE PARTICLE SWARM OPTIMIZATION

Cloud computing is a novel technology that allows consumers to access services from anywhere, at any time, under different conditions, and is controlled by a third-party cloud provider. Cloud task scheduling is a complic...

SEMANTIC FEATURE ENABLED AGGLOMERATIVE CLUSTERING FOR INFORMATION TECHNOLOGY JOB PROFILE ANALYSIS

The maintenance and implementation of computer systems are the core activities of information technology. Database administration and network architecture are also included in information technology. Professionals have a...

Download PDF file
  • EP ID EP742456
  • DOI -
  • Views 43
  • Downloads 0

How To Cite

M. Dhipa and D. Anitha (2023). DETECTION OF VIOLENCE IN FOOTBALL STADIUM THROUGH BIG DATA FRAMEWORK AND DEEP LEARNING APPROACH. International Journal of Data Science and Artificial Intelligence, 1(02), -. https://europub.co.uk/articles/-A-742456