Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib
Journal Title: AAPS PharmSciTech - Year 2016, Vol 17, Issue 2
Abstract
To improve the solubility and oral bioavailability of erlotinib, a poorly water-soluble anticancer drug, solid self-emulsifying drug delivery system (SEDDS) was developed using solid inert carriers such as dextran 40 and Aerosil® 200 (colloidal silica). The preliminary solubility of erlotinib in various oils, surfactants, and co-surfactants was determined. Labrafil M2125CS, Labrasol, and Transcutol HP were chosen as the oil, surfactant, and co-surfactant, respectively, for preparation of the SEDDS formulations. The ternary phase diagram was evaluated to show the self-emulsifying area. The formulations were optimized using the droplet size and polydispersity index (PDI) of the resultant emulsions. Then, the optimized formulation containing 5% Labrafil M2125CS, 65% Labrasol, and 30% Transcutol was spray dried with dextran or Aerosil® and characterized for surface morphology, crystallinity, and pharmacokinetics in rats. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) exhibited the amorphous form or molecular dispersion of erlotinib in the formulations. The pharmacokinetic parameters of the optimized formulations showed that the maximum concentration (C max) and area under the curve (AUC) of erlotinib were significantly increased, compared to erlotinib powder (p < 0.05). Thus, this SEDDS could be a promising method for enhancing the oral bioavailability of erlotinib.
Authors and Affiliations
Duy Hieu Truong, Tuan Hiep Tran, Thiruganesh Ramasamy, Ju Yeon Choi, Hee Hyun Lee, Cheol Moon, Han-Gon Choi, Chul Soon Yong, Jong Oh Kim
Pharmaceutical Thermal Processing
Disintegration Mediated Controlled Release Supersaturating Solid Dispersion Formulation of an Insoluble Drug: Design, Development, Optimization, and In Vitro Evaluation
The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was design...
Anti-Hepatoma Activity of a Novel Compound Glaucocalyxin H In Vivo and In Vitro
The online version of this article (doi:10.1208/s12249-014-0227-3) contains supplementary material, which is available to authorized users.
Quality-by-Design: Are We There Yet?
In 2012, the Quality-by-Design and Product Performance Focus Group of AAPS conducted a survey to assess the state of adoption and perception of Quality-by-Design (QbD). Responses from 149 anonymous individuals from indus...
Spontaneous Emulsification of Nifedipine-Loaded Self-Nanoemulsifying Drug Delivery System
Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their...