Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Journal Title: Journal of Biomedical Physics and Engineering - Year 2018, Vol 8, Issue 3
Abstract
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling. Objective: We studied whether extracted parameters of DTI, and NODDI models can be used to differentiate between edematous, tumoral, and normal areas in brain white matter (WM). Material and Methods: 12 patients with peritumoral edema underwent 3T multi-shell diffusion imaging with b-values of 1000 and 2000 smm-2 in 30 and 64 gradient directions, respectively. We fitted DTI and NODDI to data in manually drawn regions of interest and used their derived parameters to characterize edematous, tumoral and normal brain areas. Results: We found that DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) all significantly differentiated edematous from contralateral normal brain WM (p<0.005). However, only FA was found to distinguish between edematous WM fibers and tumor invaded fibers (p = 0.001). Among NODDI parameters, the intracellular volume fraction (ficvf) had the best distinguishing power with (p = 0.001) compared with the isotropic volume fraction (fiso), the orientation dispersion index (odi), and the concentration parameter of Watson distribution (κ), while comparing fibers inside normal, tumoral, and edematous areas. Conclusion: The combination of two diffusion based methods, i.e. DTI and NODDI parameters can distinguish and characterize WM fibers involved in edematus, tumoral, and normal brain areas with reasonable confidence. Further studies will be required to improve the detectability of WM fibers inside the solid tumor if they hypothetically exist in tumoral parenchyma.
Authors and Affiliations
S. Masjoodi, H. Hashemi, M. A. Oghabian, G. Sharifi
Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter
Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiatio...
Manipulation Effect on Lumbar Kinematics in Patients with Unilateral Innominate Rotation and Comparison with Asymptomatic Subjects
Background: Lumbar motion analysis is used as a clinical method in the diagnosis and treatment of low back pain (LBP). So far, no studies have shown if manipulating the sacroiliac joint (SIJ) will change spinal kinematic...
Applications of Inertial Navigation Systems in Medical Engineering
Inertial navigation systems are of the most important and practical systems in determining the velocity, position and attitude of the vehicles and different equipment. In these systems, three accelerometers and three gyr...
Monte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator
Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to im...
Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since P...