Dopaminergic Modulation of Synaptic Plasticity, Its Role in Neuropsychiatric Disorders, and Its Computational Modeling
Journal Title: Basic and Clinical Neuroscience - Year 2019, Vol 10, Issue 1
Abstract
Neuromodulators modify intrinsic characteristics of the nervous system in order to reconfigure the functional properties of neural circuits. This reconfiguration is crucial for the flexibility of the nervous system to respond on an input-modulated basis. Such a functional rearrangement is realized by modification of intrinsic properties of the neural circuits including synaptic interactions. Dopamine is an important neuromodulator involved in motivation and stimulus-reward learning process, and adjusts synaptic dynamics in multiple time scales through different pathways. The modification of synaptic plasticity by dopamine underlies the change in synaptic transmission and integration mechanisms, which affects intrinsic properties of the neural system including membrane excitability, probability of neurotransmitters release, receptors’ response to neurotransmitters, protein trafficking, and gene transcription. Dopamine also plays a central role in behavioral control, whereas its malfunction can cause cognitive disorders. Impaired dopamine signaling is implicated in several neuropsychiatric disorders such as Parkinson’s disease, drug addiction, schizophrenia, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Tourette’s syndrome. Therefore, dopamine plays a crucial role in the nervous system, where its proper modulation of neural circuits may enhance plasticity-related procedures, but disturbances in dopamine signaling might be involved in numerous neuropsychiatric disorders. In recent years, several computational models are proposed to formulate the involvement of dopamine in synaptic plasticity or neuropsychiatric disorders and address their connection based on the experimental findings.
Authors and Affiliations
Mojtaba Madadi Asl, Abdol-Hossein Vahabie, Alireza Valizadeh
Different Expressions of Specific Transcription Factors of Th1 (T-bet) and Th2 cells (GATA-3) by Peripheral Blood Mononuclear Cells From Patients With Multiple Sclerosis
Introduction: Multiple Sclerosis (MS) is an inflammatory disorder caused by self-reactive Th1 lymphocytes, while Th2 cells may confer protection. The Th1 and Th2 cell differentiation are regulated by specific transcripti...
Effects of Clavulanic Acid on the Acquisition and Reinstatement Following Morphine-induced Conditioned Place Preference in Mice
Introduction: β-Lactam antibiotics like Clavulanic Acid (CA) enhances cellular glutamate uptake through activation of Glutamate Transporter subtype 1 (GLT-1) and decreases the level of glutamate in the nervous system. Ba...
The Effect of Orally Administered Probiotics on the Behavioral, Cellular, and Molecular Aspects of Adjuvant-Induced Arthritis
Introduction: Rheumatoid Arthritis (RA) is a chronic autoimmune disease, which is accompanied with pain, hyperalgesia, and edema. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pat...
Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it...
Transient Inactivation of Shell Part of Nucleus Accumbens Inhibits and Exacerbates Stress-Induced Metabolic Alterations in Wistar Rats
Introduction: The role of different parts of the extended amygdala in metabolic signs of stress is not well understood. In the present study, we decided to evaluate the impact of the shell part of nucleus accumbens (NAc)...