Economic evaluation of biomass pyrolysis liquefaction technology based on life cycle assessment

Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 3

Abstract

In the context of the "dual carbon" goals, exploring the production of bio-gasoline and bio-diesel through a biomass energy and pyrolysis liquefaction production chain holds significant potential. This approach could help alleviate China′s dependence on crude oil imports. Based on the construction of a bio-oil plant and its operational lifespan, the static investment payback period is 5.46 years, the dynamic investment payback period is 7.45 years, and the internal rate of return is 17%. The cumulative net present value is 20.21491 million yuan. To ensure profitability, the selling price of bio-diesel should not be lower than 6105.81 yuan per ton (assuming consistent production costs, production capacity, and sales capacity). The project is less sensitive to raw material prices than electricity costs, but requires a production scale greater than 1700 tons for profitability. Bio-oil plants should prioritize reducing energy consumption. An affordable and reliable raw material supply is crucial for the survival, development, and competitiveness of enterprises.

Authors and Affiliations

JIN Mengyu|Institute of New Rural Development, Tongji University, China, SONG Yuanbo|Institute of New Rural Development, Tongji University, China, GU Minyan|Shanghai Municipal Engineering Design and Research Institute Co., Ltd., China, SI Huiping|Institute of New Rural Development, Tongji University, China, SHEN Zheng*|Institute of New Rural Development, Tongji University, China, ZHANG Yalei|Institute of New Rural Development, Tongji University, China, College of Environmental Science and Engineering, Tongji University, China

Keywords

Related Articles

Fast catalytic pyrolysis of lignin into monocyclic aromatic hydrocarbons over in-situ generated Fe-based catalyst

This study examined the catalytic pyrolysis of kraft lignin using an in-situ generated Fe-based catalyst from iron ore. The fresh and spent catalysts were characterized by a transmission electron microscope to investigat...

Application of HHO-CNN-LSTM-based CMAQ correction model in air quality forecasting in Shanghai

With rising levels of air-pollution, air-quality forecasting has become integral to the dissemination of human health advisories and the preparation of mitigation strategies. Traditional air quality models, such as the C...

Advances in biomass-based thermochemical hydrogen production technology

The excessive utilization of fossil fuels has caused the energy crisis and greenhouse effect, and the development of clean and sustainable sources can adjust the energy structure of China and promote green and sustainabl...

Recent progress on catalysts for low-concentration coal mine gas oxidation

During the coal extraction process, the emission of low-concentration coal mine gas significantly contributes to greenhouse gas emissions. Catalytic oxidation is an effective strategy for converting the coal mine gas to...

The coordination complex formed by oxalic acid and chromate and the mechanism for enhanced photoreduction of Cr(Ⅵ) under visible-light irradiation

Oxalic acid, which mainly originates from root exudation and plant residue decomposition, is one of the most widely existiug carboxylic acids, and has a dramatic impact on the reduction of chromate in natural waters. In...

Download PDF file
  • EP ID EP737939
  • DOI 10.20078/j.eep.20231103
  • Views 6
  • Downloads 0

How To Cite

JIN Mengyu, SONG Yuanbo, GU Minyan, SI Huiping, SHEN Zheng*, ZHANG Yalei (2024). Economic evaluation of biomass pyrolysis liquefaction technology based on life cycle assessment. Energy Environmental Protection, 38(3), -. https://europub.co.uk/articles/-A-737939