Effect of acute and chronic treatment with QCF-3 (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone, a novel 5-HT(3) receptor antagonist, in animal models of depression.
Journal Title: Pharmacological Reports - Year 2010, Vol 62, Issue 2
Abstract
The serotonin type 3 (5-HT(3)) receptor is unique among the seven recognized serotonin receptor "families". The existence serotonin type 3 receptor (5-HT(3)) in neuro-anatomical regions stimulated the research interest for novel therapeutic targets such as anxiety, depression, nociception and cognitive function. In the current study, (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone (QCF-3), a novel 5-HT(3) receptor antagonist, with an optimal log P (the logarithm of the ratio of the concentrations of the un-ionized solute in the solvents is called log P) and significant pA2 value (is a negative logarithm of the molar concentration of antagonist required to reduce the effect of multiple dose agonist to that of single dose) was screened for its anti-depressant potential using rodent behavioral models of depression. Psycho-pharmacological investigations involved acute and chronic treatment (14 days) with QCF-3 and assessment of behavior during the forced swim test (FST) and tail suspension test (TST) in mice and olfactory bulbectomised rats. A dose response study in mice revealed an initial anti-depressant-like effect of QCF-3 (0.5-4 mg/kg, ip) in the FST and TST. Interaction studies showed that QCF-3 (1 and 2 mg/kg) significantly enhanced the antidepressant action of fluoxetine and bupropion in the FST and TST, respectively. QCF-3 (1 and 2 mg/kg) potentiated the 5-hydroxytryptophan (5-HTP) induced head twitches response in mice and reversed reserpine-induced hypothermia in rats. Further, OBX rats exhibited behavioral anomalies in the open field and hyper-emotionality tests that were attenuated by chronic QCF-3 treatment. In conclusion, this behavioral study describes an antidepressant-like effect of QCF-3 in rodent behavioral models of depression.
Authors and Affiliations
Thangaraj Devadoss, Dilip Pandey, Radhakrishnan Mahesh, Shushil Yadav
Blood platelet abnormalities and pharmacological modulation of platelet reactivity in patients with diabetes mellitus.
The overall picture of platelet abnormalities in diabetes mellitus (DM), including altered adhesion and aggregation, is hypersensitivity of diabetic platelets to agonists. "Primed" diabetic platelets respond more frequen...
Influence of NADPH oxidase inhibition on oxidative stress parameters in rat hearts.
The aim of this study was to assess whether apocynin, an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocker, influences lipid peroxidation TBARS, hydrogen peroxide (H2O2) content, protein level, heart ed...
Gender differences in genetic mouse models evaluated for depressive-like and antidepressant behavior.
Depression is a mental disease that affects complex cognitive and emotional functions. It is believed that depression is twice as prevalent in women as in men. This phenomenon may influence the response to various antide...
Physiology and pharmacology of melatonin in relation to biological rhythms.
Melatonin is an evolutionarily conserved molecule that serves a time-keeping function in various species. In vertebrates, melatonin is produced predominantly by the pineal gland with a marked circadian rhythm that is gov...
Frequency-dependent inhibition of antidromic hippocampal compound action potentials by anti-convulsants.
Using rat hippocampal slices, extracellularly recorded antidromic compound action potentials (cAP) were produced in CA1 pyramidal cell populations by electrical stimulation of the alveus at 0.5 Hz. These responses were a...