Effect of nano-TiO2 and Salicylic Acid Foliar Application on Some Biochemical Changes of Corn S.C. 704 (Zea mays L.) under Water Deficit Stress

Journal Title: Iranian Journal of Field Crops Research - Year 2020, Vol 18, Issue 2

Abstract

IntroductionDrought is one of the most important causes of decline in agricultural productivity worldwide. TiO2 is one of the materials that nowadays, its properties have been reported to reduce environmental impact. TiO2 with increasing activity of PS II light reduction, activity of chloroplast photophosphorylation, rubisco enzyme, nitrate reductase enzyme activity, catalase and peroxidase and improving the content of some essential elements in plant tissues, increases the yield of different crops. Salicylate is one of the natural growth regulators and is a natural phenolic compound that contributes to the regulation of physiological processes in plants. In the study of the effect of nano-TiO2 spraying on some of the agronomy characteristics of wheat, 0.02% nano-TiO2 foliar application under drought stress conditions increased seed yield by 23% compared to non-foliar application. Considering that a large part of cultivated land in Iran has semi-arid climatic conditions and because of its special geographical position, in most parts of it, important abiotic stresses such as drought, salinity, and temperature decrease the yield and, in some cases, led also to failure of agriculture. Therefore, the aim of this study was to evaluate and identify important biochemical change of corn 704 single cross under water deficit stress and application of the TiO2 and salicylic acid compound.Materials and MethodsIn order to investigate the effect of nano-TiO2 and salicylic acid foliar application on some biochemical changes of corn 704 single cross under water deficit stress, an experiment was conducted in split plot factorial based on RCBD in three replications at the Research Station of the Islamic Azad University, Tabriz Branch, during growing seasons of 2017-2018. Treatments were three levels of water deficit stress (50, 75, and 100% filed capacity (FC)), three levels of the factorial combination of nano-TiO2 (n-TiO2) foliar application (non-application (control), 0.01, and 0.03), and two levels of salicylic acid (SA) foliar application (non-application and 0.5%). Field capacity was determined from the pressure plate machine. TiO2 foliar application on the shoot was performed three times during the growing season and in the stages of 8-10 leaf, tasselling, and grain filling. Irrigation was done according to the needs of the canopy and depending on the weather conditions of the region and irrigation treatments were applied from 8-10 leaves stage. superoxide dismutase (SOD) activity, catalase (CAT), ascorbate peroxidase (APX) activity, and chlorophyll (Chl) content were measured according to the Giannopolities and Ries (1977), Cakmak and Horst (1991), Nakano and Asada (1981), and Porra (2002) methods, respectively. The MSTAT-C software was used to analysis of variance and the means of the treatments were compared using the Duncan’s test at 0.05 probability level. Results and Discussion N-TiO2 and SA foliar application increased CAT, APX activity (p < 0.05) and content of Chl a, b, and total Chl (p < 0.01). Also, the interaction between SA and water deficit stress on SOD and interaction betweenn-TiO2 and SA on SOD (p < 0.05) was significant. Results showed that 0.01% n-TiO2 foliar application under 50% water deficit stress had the highest SOD. Furthmore, 0.01% n-TiO2 and 0.5% SA foliar application under 50% water deficit stress had the highest CAT. 0.01% n-TiO2 and 0.5% SA foliar application under complete irrigation had 79%, 2.5 times and 82 % more than Chl a, b and total Chl compare non-use of n-TiO2 and SA under 50% FC, respectively. Conclusions The results of this study showed that 0.01% n-TiO2 foliar application had the highest superoxide dismutase enzyme activity under 50 % FC. Also, 0.01% n-TiO2 and 0.5% SA foliar application under 50 % FC had the highest catalase enzyme activity. Use of 0.01% n-TiO2 and 0.5% SA under normal stress (50 % FC), increased 79%, 2.5 time and 82% Chl a, b and total Chl compare to control, respectively.

Authors and Affiliations

F Sharghi,E Khalilvand Behrouzyar,

Keywords

Related Articles

Effect of Deficit Irrigation on Water Use Efficiency and Tuber Dry Matter of Potato Cultivars

IntroductionPotato ranks the first with respect to the amount of energy production per unit area. It is cultivated in about 19.5 million hectares throughout the world and its annual production is about 375 million tons....

Effect of Planting Pattern and Weed Management on the Yield and Yield Components of Two Peanuts Cultivars in the Climatic Conditions of Kermanshah

IntroductionPeanuts (Arachis hypogaea L.) possess significant commercial and nutritional value (Gulluoglu, Bakal, Bihter, Cemal, & Arioglu, 2016). However, this plant is highly susceptible to weed competition due to...

The Effect of Photosynthetic Characteristics and Grain Yield of Different Growth Habit of Wheat Cultivars to Early, usual and Delayed Planting Dates

IntroductionIn recent decades, the introduction of high-yielding cultivars under optimal conditions has been the main focus of grain research programs. The identification of wheat cultivars that have acceptable yields on...

Evaluation of Yield, Yield Components, and Forage Quality in the Intercropping of Kochia (Kochia scoparia L.) and Cowpea (Vigna unguiculata)

IntroductionThe agricultural systems are facing numerous challenges in maintaining and providing food security. Achieving this goal, considering the growing global population is possible through the application of sustai...

The Effect of Different Levels of Manure, Urea and their Combination on Some Drought Resistance Physiological Traits of Moldavian balm (Dracocephalum moldavica L.) under Different Irrigation Regimes

IntroductionWater deficit is one of the factors limiting the growth of plants in the world and is the most common environmental stress. Several studies show decreasing in growth, yield and plant death as a result of unfa...

Download PDF file
  • EP ID EP718492
  • DOI https://doi.org/10.22067/gsc.v18i2.81953
  • Views 44
  • Downloads 0

How To Cite

F Sharghi, E Khalilvand Behrouzyar, (2020). Effect of nano-TiO2 and Salicylic Acid Foliar Application on Some Biochemical Changes of Corn S.C. 704 (Zea mays L.) under Water Deficit Stress. Iranian Journal of Field Crops Research, 18(2), -. https://europub.co.uk/articles/-A-718492