Effect of reaction temperature on Mo/Al_2O_3 catalytic hydrodeoxygenation of alkali lignin bio-oils
Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 2
Abstract
Alkali lignin, an important source of industrial lignin, can be used for producing aromatic components in biofuels while retaining its aromatic ring structure through hydrothermal liquefaction technology. The temperature during the reaction process significantly influences the bio-oil yield and composition. This study investigates the impact of reaction temperature on the oil yield and aromatics yield in the preparation of bio-oil through hydrothermal liquefaction of alkali lignin catalyzed by Mo/Al_2O_3. The study′s findings revealed that the oil yield initially increased and then decreased with increasing temperature, reaching its highest value at 280 ℃. As the temperature increased, the O/C ratio of the bio-oil continuously decreased to a minimum of 0.22. In contrast, the H/C ratio steadily increased to a maximum of 1.14. Additionally, the high calorific value steadily increased to a maximum of 30.41 MJ/kg. These results indicated that higher temperatures contributed to improving the fuel properties of the bio-oil. However, increasing the temperature was not conducive to the enrichment of aromatic components in the bio-oil. The higher the temperature, the lower the relative content of aromatic compounds and the higher the content of phenolic compounds in the bio-oil. The study observed that the relative content of aromatics reached its peak value of 34.1% at 260 ℃ when 15% Mo/Al_2O_3 was added as a catalyst. At this temperature, the selectivity to toluene in the aromatics product was as high as 97.7%, indicating the optimal enrichment of aromatics. In summary, the study demonstrates that the temperature during the hydrothermal liquefaction process of alkali lignin affects both the bio-oil yield and composition. While higher temperatures enhance the oil yield and fuel properties of the bio-oil, they also reduce the relative content of aromatic compounds. The addition of Mo/Al_2O_3 as a catalyst at an appropriate temperature can promote the enrichment of aromatics, where toluene is the dominant product.
Authors and Affiliations
CAO He|Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, China, YANG Tianhua*|Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, China, LI Bingshuo|Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, China, ZHANG Haijun|Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, China, TONG Yao|Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, China
Effects of surface Pt modification on titanium nanotubes for photocatalytic methylamine oxidation
In this study, PtCl_x, PtO_x and Pt^0 modified titanium dioxide nanotubes (TNTs) materials were prepared by impregnation, precipitation-calcination and photodeposition methods, and were applied to the photocatalytic degr...
Advances in the removal of emerging contaminants from water mediated by chemically modified biochar
Emerging contaminants are pollutants with relatively low concentration but high toxicity. They can be enriched in living organisms and transferred to the human body through the food chain, posing a significant threat to...
Research on the quantitative assessment of the carbon footprint of domestic waste incineration power generation
In recent years, waste incineration power generation has become one method for domestic waste treatment. The carbon footprint can provide a quantitative tool for evaluating greenhouse gas emissions from this process. A t...
Electrochemical upgrading of bio-oil: Effect of acetic acid and aromatic-rich fraction on coke formation
Bio-oil is the only liquid carbon-containing renewable resource. Due to its complex composition, low calorific value, high acidity, high viscosity, and other factors, it requires upgrading before further utilization. Ele...
TiO_2/g-C_3N_4 water absorption coupled photocatalytic degradation of isopropanol exhaust gas
Isopropanol, as a typical volatile organic compound released into the atmosphere, can cause harm to the environment and human health, and the coupling of aqueous phase absorption and photocatalysis is a useful technical...