Effect of rise in simulated inspiratory flow rate and carrier particle size on powder emptying from dry powder inhalers

Journal Title: The AAPS Journal - Year 2000, Vol 2, Issue 2

Abstract

The purpose of this study was to evaluate the effect of carrier particle size and simulated inspiratory flow increase rate on emptying from dry powder inhalers (DPIs). Several flow rate ramps were created using a computer-generated voltage signal linked to an electronic proportioning valve with a fast response time. Different linear ramps were programmed to reach 30, 60, 90, and 120 L/minute over 1, 2, or 3 seconds. At the lower flow rates, 100-ms and 500-ms ramps were also investigated. Three DPIs, Spinhaler, Rotahaler, and Turbuhaler, were used to test the effect of flow rate ramp on powder emptying. To test the effect of carrier particle size, anhydrous lactose was sieved into 3 particle sizes, and 20 mg of each was introduced into #2 and #3 hard gelatin capsules for Spinhaler and Rotahaler, respectively. Emptying tests were also carried out using the on/off solenoid valve described in the United States. Pharmacopeia (USP) (resulting in no ramp generation). Powder emptying increased from 9% to 46% for Rotahaler and 69% to 86% for Spinhaler from the shallowest (3 seconds to reach peak flow) to the 100-ms ramp for the 53-to 75-μm lactose size range at 30 L/minute. Similar trends were observed for larger particle size fractions at the same flow rate. However, at higher airflow rates (60, 90, and 120 L/minute), there was no significant increase in percentage of emptying within the ramps for a particular particle size range. Trends observed were similar for placebo-filled Turbuhaler and commercially available Rotacaps used with Rotahaler, with the steepest ramp demonstrating more complete emptying. Percentage of powder emptying determined by the USP solenoid valve overestimated the emitted dose compared with the ramp method at 30 L/minute for all 3 devices. Results indicate that there is a significant difference in powder emptying at 30 L minute from the shallowest to the steepest ramp within a particular size range. Within a particular particle size range, the USP method produced more complete emptying than even the steepest ramp, especially at the lower flow rates. Thus, when the USP device is used to estimate DPI emptying at lower flow rates, the results are likely to overestimate DPI performance significantly.

Authors and Affiliations

Varsha Chavan, Richard Dalby

Keywords

Related Articles

N-n-alkylnicotinium analogs, a novel class of antagonists at α4β2* Nicotinic acetylcholine receptors: Inhibition of S(-)-nicotine-evoked 86Rb+Efflux from rat thalamic synaptosomes

PyridineN-n-alkylation of S(-)-nicotine (NIC) affordsN-n-alkylnicotinium analogs, previously shown to competitively inhibit [3H]NIC binding and interact with α4β2* nicotinic receptors (nAChRs). The presen...

Acute and subchronic (28-day) oral toxicity study in rats fed with novel surfactants

The toxicity of 2 new synthetic lipids, 1,2-dioleoyl-rac-glycerol-3-dodecaethylene glycol, GDO-12 (lipid 1) and 1,2-distearoyl-rac-glycerol-3-dodecaethylene glycol, GDS-12 (lipid 2) has been evaluated in acute and subchr...

Morphology and buoyancy of oil-entrapped calcium pectinate gel beads

A new emulsion-gelation method to prepare oil-entrapped calcium pectinate gel (CaPG) beads capable of floating in the gastric condition was designed and tested. The gel beads containing edible oil were prepared by either...

Informatic Tools and Approaches in Postmarketing Pharmacovigilance Used by FDA

The safety profile of newly approved drugs and therapeutic biologics is less well developed by pre-marketing clinical testing than is the efficacy profile. The full safety profile of an approved product is established du...

Download PDF file
  • EP ID EP682077
  • DOI  10.1208/ps020210
  • Views 76
  • Downloads 0

How To Cite

Varsha Chavan, Richard Dalby (2000). Effect of rise in simulated inspiratory flow rate and carrier particle size on powder emptying from dry powder inhalers. The AAPS Journal, 2(2), -. https://europub.co.uk/articles/-A-682077