EFFICIENCY ESTIMATION OF METHODS FOR SENTIMENT ANALYSIS OF SOCIAL NETWORK MESSAGES

Abstract

<p class="304Annotationeng"><span lang="EN-US">The results of effectiveness evaluating of machine learning methods for sentiment analysis of social network messages are presented in this paper. The importance of the sentiment analysis problem as one of the important tasks of natural language processing in general and textual information processing in particular is substantiated. A review of existing methods and software for sentiment analysis are made. The choice of classifiers for sentiment analysis of texts for this research is substantiated. The principles of functioning of a Naïve Bayesian Classifier and classifier based on a recurrent neural network are described. Classifiers were sequentially trained in two corpuses: first, in the RuTweetCorp corpus, the corpus of short messages from the social network Twitter, and then on the Slang corpus, the corpus of messages from social networks Facebook and Instagram and posts from the Pikabu website, second corpus have been marked up the tonality of slang words. Information about the tonality of slang words was taken from the youth slang dictionary obtained as a result of the survey of users. The separation of texts by tonality was carried out into three classes: positive, negative and neutral. The efficiency of these classifiers was evaluated. Efficiency evaluation was carried out according to standard metrics Recall, Precision, F-measure, Accuracy. For the naive Bayesian classifier, after training on the first corpus, the following metric values were obtained: Recall = 0,853; Precision = 0,869; F-measure = 0,861; Accuracy = 0,855; and after training on the second corpus such values were obtained: Recall = 0,948; Precision = 0,975; F-measure = 0,961; Accuracy = 0,960. For the classifier based on a recurrent neural network, after training on the first corpus, the following metric values were obtained: Recall = 0,870; Precision = 0,878; F-measure = 0,874; Accuracy = 0,861; and after training on the second corpus such values were obtained: Recall = 0,965; Precision = 0,982; F-measure = 0,973; Accuracy = 0,973. These results prove that additional training on the second corpus increased the efficiency of classifiers by 10–11%.</span></p>

Authors and Affiliations

Natalia Borysova, Karina Melnyk

Keywords

Related Articles

Моделирование переходных режимов ядерного реактора ВВЭР-1000 с учетом борного регулирования

<p class="204">Разработаны модели реактора ВВЭР-1000 в виде систем дифференциальных уравнений с относительными переменными состояния, описывающие нейтронную кинетику реактора, тепловые процессы, изменения концентраций кс...

Стохастический анализ измерений пятишарового спектрометра Боннера

<span>Проанализированы данные, полученные при испытании шарового нейтронного спектрометра Боннера активационного типа, состоящего из пяти полиэтиленовых шаров диметром от 90 мм до 245 мм. В качестве активируемого материа...

Вибір раціонального режиму періодичної експлуатації газових та газоконденсатних свердловин

<p class="104"><span lang="UK">В статті розглянуто періодичну експлуатацію газових та газоконденсатних свердловин на завершальній стадії розробки родовищ. Експлуатація таких свердловин характеризується ускладненнями при...

Инвертирование линейных динамических систем в среде квазигармонических сигналов

<span>Методы обращения динамических систем нашли широкое распространение для решения задач управления механическими и электрическими системами. Инвертирование динамических систем является эффективным способом реализации...

INFORMATION SUPPORT FOR THE ANALYSIS OF SKILLS AND ABILITIES OF UNIVERSITY STUDENTS

In the below article, the application of the fuzzy logical conclusion method is considered as decision-maker in the process of analyzing the students skills and abilities based on the requirements of potential employers,...

Download PDF file
  • EP ID EP669220
  • DOI 10.20998/2079-0023.2019.02.13
  • Views 137
  • Downloads 0

How To Cite

Natalia Borysova, Karina Melnyk (2019). EFFICIENCY ESTIMATION OF METHODS FOR SENTIMENT ANALYSIS OF SOCIAL NETWORK MESSAGES. Вісник Національного технічного університету «ХПІ». Серія: Системний аналiз, управління та iнформацiйнi технологiї, 0(2), 76-81. https://europub.co.uk/articles/-A-669220