Efficient Markov chain Monte Carlo sampling for electrical impedance tomography

Journal Title: Computer Assisted Methods in Engineering and Science - Year 2014, Vol 21, Issue 3

Abstract

This paper studies electrical impedance tomography (EIT) using Bayesian inference [1]. The resulting posterior distribution is sampled by Markov chain Monte Carlo (MCMC) [2]. This paper studies a toy model of EIT as the one presented in [3], and focuses on efficient MCMC sampling for this model. First, this paper analyses the computation of forward map of EIT which is the bottleneck of each MCMC update. The forward map is computed by the finite element method [4]. Here its exact computation was conducted up to five times more efficient, by updating the Cholesky factor of the stiffness matrix [5]. Since the forward map computation takes up nearly all the CPU time in each MCMC update, the overall efficiency of MCMC algorithms can be improved almost to the same amount. The forward map can also be computed approximately by local linearisation, and this approximate computation is much more efficient than the exact one. Without loss of efficiency, this approximate computation is more accurate here, after a log transformation is introduced into the local linearisation process. Later on, this improvement of accuracy will play an important role when the approximate computation of forward map will be employed for devising efficient MCMC algorithms. Second, the paper presents two novel MCMC algorithms for sampling the posterior distribution in the toy model of EIT. The two algorithms are made within the 'multiple prior update' [6] and 'the delayed-acceptance Metropolis-Hastings' [7] schemes respectively. Both of them have MCMC proposals that are made of localized updates, so that the forward map computation in each MCMC update can be made efficient by updating the Cholesky factor of the stiffness matrix. Both algorithms' performances are compared to that of the standard single-site Metropolis [8], which is considered hard to surpass [3]. The algorithm of 'multiple prior update' is found to be six times more efficient, while 'the delayed-acceptance Metropolis-Hastings' with single-site update is at least twice more efficient.

Authors and Affiliations

Erfang Ma

Keywords

Related Articles

Gaussian mixture model for time series-based structural damage detection

In this paper, a time series-based damage detection algorithm is proposed using Gaussian mixture model (GMM) and expectation maximization (EM) framework. The vibration time series from the structure are modelled as the a...

Modelling dynamics of transmission conductors with Cosserat rod

We proposed a method to analyze the galloping, a vibration by wind force, of transmission conductors. The Cosserat rod model was introduced to describe the motion of the conductor line. The deformation was tracked using...

Numerical analysis of tissue heating using the bioheat transfer porous model

The paper concerns the modelling of artificial hyperthermia. The 3D domain including healthy tissue and tumor region is considered. Heat transfer processes proceeding in this domain are described by the Pennes model and...

Variational Bayesian inversion for microwave breast imaging

Microwave imaging is considered as a nonlinear inverse scattering problem and tackled in a Bayesian estimation framework. The object under test (a breast affected by a tumor) is assumed to be composed of compact regions...

Numerical studies of dynamic stability under small random parametric excitations

An efficient numerical procedure is proposed to obtain mean-square stability regions for both single-degree-of-freedom and two-degree-of-freedom linear systems under parametric bounded noise excitation. This procedure re...

Download PDF file
  • EP ID EP73497
  • DOI -
  • Views 194
  • Downloads 0

How To Cite

Erfang Ma (2014). Efficient Markov chain Monte Carlo sampling for electrical impedance tomography. Computer Assisted Methods in Engineering and Science, 21(3), 223-232. https://europub.co.uk/articles/-A-73497