Electrochemical study of uncemented hip endoprosthesis cups
Journal Title: Engineering of Biomaterials / Inżynieria Biomateriałów - Year 2015, Vol 18, Issue 132
Abstract
The aim of the research was to compare the properties of the new cup and the cup after alloplastic revision surgery which has been staying in the human body for 68 months. In the studies chemical composition, mechanical and physicochemical properties were analyzed. The properties were analyzed on the basis of studies of glow discharge atomic emission, measurements of hardness and potentiodynamic studies of resistance to pitting corrosion and electrochemical impedance spectroscopy (EIS). The electrochemical research was conducted in Ringer’s solution. Additionally, analysis of the macroscopic surface was conducted. The results revealed that the cups were produced from high nitrogen stainless steel which chemical composition and mechanical properties met the requirements of the ISO 5832-9 standards. The results of hardness revealed areas with varied strengthening of the cup’s biomaterial. Parameters of the corrosion resistance for the cup after implantation were comparable to the values obtained for the cup in the initial state. Additionally, EIS study determined the nature of the oxide layer on the surface of the implant removed from the body. The results showed the existence of a double layer forming good protection of the metal biomaterial against corrosion. The performed macroscopic observation revealed the presence of hydroxyapatite on the surface of the cup after the 68 months in the body. We conclude that the reason for revision arthroplasty was the lack of osteointegration of the outer surface of the implant caused by non- -uniform adhesion of the implant to the bone surface. However, no reduction in corrosion resistance of the cup after implantation was observed which indicates its biocompatibility in the tissue environment.
Authors and Affiliations
W. Kajzer, A. Kajzer, O. Grzeszczuk, J. Semenowicz
Phase transition of chitosan chloride solutions as potential material for application in biomedical engineering
The paper presents the results of rheological study on chitosan chloride solutions, forming gels under the influence of increased temperature. Its aim was to establish the basic parameters specifying phase transition: ge...
Właściwości mechaniczne stabilizatorów zewnętrznych "Carboelastofix" z kompozytów polimerowowęglowych do zespalania kości
Zrost pourazowy kości zależy od wielu czynników. Jednym z najważniejszych jest uzyskanie izoelastycznego zespolenia, którego sztywność będzie zmniejszać się w miarę postępu gojenia, i które umożliwi niewielkie ruchy poos...
The influence of mineralization conditions on the effectiveness of enzymatic mineralization of hydrogels
Polysaccharide hydrogels are widely used in food industry and medicine. Gellan gum (GG) recently gained a lot of attention as a promising material for tissue regeneration proposes due to its excellent biocompatibility an...
Hydrogels based on ionically and covalently crosslinked alginates
In this work a method of formation of hydrogel beads with increased mechanical durability is presented. Sodium alginate in the form of hydrogel beads was modified by ionic and covalent crosslinking. The crosslinking was...
Badanie własności fizykochemicznych bezcementowych panewek stawu biodrowego
Celem prowadzonych badań było porównanie własności panewki nowej oraz po alloplastyce rewizyjnej przebywającej w organizmie człowieka przez 68 miesięcy. W ramach badań przeprowadzono analizę składu chemicznego, własności...