Enhanced Design of Piston Cooling Nozzles via Computational Fluid Dynamics
Journal Title: Power Engineering and Engineering Thermophysics - Year 2024, Vol 3, Issue 1
Abstract
To elucidate the relationship between the flow rate of an engine’s piston cooling nozzle and its internal structure, a structural model of the piston cooling nozzle and a three-dimensional model of the internal flow field were established through an analysis of the nozzle's structural characteristics and operational conditions. Flow field simulations were conducted using Fluent software, yielding velocity and pressure distribution maps as well as flow rate data within the fluid domain of the piston cooling nozzle. Additionally, the variation in flow rate with changes in the nozzle throat length and diameter was investigated. It was found that the flow rate decreases linearly with an increase in nozzle throat length, while it exhibits a nonlinear increase with an increase in throat diameter. Compared to changes in throat length, modifications in throat diameter have a more significant impact on the flow rate of the piston cooling nozzle. An analytical expression for the flow rate as a function of throat diameter was also derived, providing valuable insights and guidance for the engineering design of nozzles.
Authors and Affiliations
Xianren Zeng, Jiahui Zhang, Linmei Li, Jiaxiang Zuo
Efficiency Enhancement in Air Heat Exchangers: Analyzing the Impact of Size Ratio and Geometric Modifications on Delta-Wing Vortex Generators
In the domain of compact flat plate heat exchangers, enhancing efficiency remains a pivotal challenge, primarily due to the low thermal conductivity characteristic of the gas phase. This investigation explores efficiency...
Computational Analysis of Thermal Performance Augmentation in Helical Coil Heat Exchangers via CuO/Water Nanofluid
Helical or spiral coiled heat exchangers, prevalent in industries such as power generation, heat recovery systems, the food sector, and various plant processes, exhibit potential for performance enhancement through optim...
Energy and Exergy Evaluation of a Dual Fuel Combined Cycle Power Plant: An Optimization Case Study of the Khoy Plant
This study examines the energy and exergy performance of the Khoy dual fuel combined cycle power plant, focusing on dual pressure heat recovery steam generators (HRSGs). The aim is to identify an optimal design through t...
Bilinear and Bicubic Interpolations for Image Presentation of Mechanical Stress and Temperature Distribution
Bilinear and bicubic interpolations were often used in digital elevation models (DEMs), image scaling, and image restoration, with the aid of spatial transform techniques. This paper resorts to bilinear and bicubic inter...
Properties of Heterogeneous Material Using Fractional Models: Rubber Agglomerate Panel
This paper aimed to analyze the properties of rubber agglomerate panel, a heterogeneous material. After making three adjustments using three classical differential fractional models, namely, the Scott-Blair model, the ge...