Enhanced Pest and Disease Detection in Agriculture Using Deep Learning-Enabled Drones
Journal Title: Acadlore Transactions on AI and Machine Learning - Year 2024, Vol 3, Issue 1
Abstract
In this study, an integrated pest and disease recognition system for agricultural drones has been developed, leveraging deep learning technologies to significantly improve the accuracy and efficiency of pest and disease detection in agricultural settings. By employing convolutional neural networks (CNN) in conjunction with high-definition image acquisition and wireless data transmission, the system demonstrates proficiency in the effective identification and classification of various agricultural pests and diseases. Methodologically, a deep learning framework has been innovatively applied, incorporating critical modules such as image acquisition, data transmission, and pest and disease identification. This comprehensive approach facilitates rapid and precise classification of agricultural pests and diseases, while catering to the needs of remote operation and real-time data processing, thus ensuring both system efficiency and data security. Comparative analyses reveal that this system offers a notable enhancement in both accuracy and response time for pest and disease recognition, surpassing traditional detection methods and optimizing the management of agricultural pests and diseases. The significant contribution of this research is the successful integration of deep learning into the domain of agricultural pest and disease detection, marking a new era in smart agriculture technology. The findings of this study bear substantial theoretical and practical implications, advancing precision agriculture practices and contributing to the sustainability and efficiency of agricultural production.
Authors and Affiliations
Wenqi Li,Xixi Han,Zhibo Lin,Atta-ur Rahman
Augmenting Diabetic Retinopathy Severity Prediction with a Dual-Level Deep Learning Approach Utilizing Customized MobileNet Feature Embeddings
Diabetic retinopathy, a severe ocular disease correlated with elevated blood glucose levels in diabetic patients, carries a significant risk of visual impairment. The essentiality of its timely and precise severity class...
Analysis of Artificial Intelligence and Natural Language Processing Significance as Expert Systems Support for E-Health Using Pre-Train Deep Learning Models
Artificial intelligence (AI) and natural language processing (NLP) are relentless technologies for healthcare that can support a strong and secure digital system with embedded applications of internet of things (IoTs). T...
Information Acquisition Method of Tomato Plug Seedlings Based on Cycle-Consistent Adversarial Network
In order to solve the interference caused by the overlapping and extrusion of adjacent plug seedlings, accurately obtain the information of tomato plug seedlings, and improve the transplanting effect of automatic tomato...
Enhancing Session-Based Recommendations with Popularity-Aware Graph Neural Networks
Real-time and reliable recommendations are essential for anonymous users in session-based recommendation systems. Graph neural network-based algorithms are attracting more researchers due to their simplicity and efficien...
Automated Identification of Insect Pests: A Deep Transfer Learning Approach Using ResNet
In the realm of agriculture, crop yields of fundamental cereals such as rice, wheat, maize, soybeans, and sugarcane are adversely impacted by insect pest invasions, leading to significant reductions in agricultural outpu...