Enhancement of Building Thermal Performance: A Comparative Analysis of Integrated Solar Chimney and Geothermal Systems

Journal Title: Journal of Sustainability for Energy - Year 2023, Vol 2, Issue 2

Abstract

A comparative investigation is conducted, employing Computational Fluid Dynamics (CFD) simulations to study two distinct room space configurations: one featuring a solar chimney and another integrating both a solar chimney and a geothermal system. The primary objective of this investigation is to scrutinize the thermal behavior, energy efficiency, and mass flow rates of these systems. Results underscore the considerable positive implications of the geothermal system integration. This amalgamation precipitates diminished average room temperatures and elevated mass flow rates, signifying superior thermal comfort and energy performance. The room implementing the geothermal system exhibited an average temperature of 302.2 Kelvin and a mass flow rate of 4.134 × 10−6 kg/s, in contrast to the room without the geothermal system, which demonstrated an average temperature of 309.6 Kelvin and a mass flow rate of 1.878 × 10−6 kg/s. These findings have practical repercussions for architects, engineers, and policymakers, facilitating well-grounded decisions in the domain of sustainable building design. The observed enhancement in thermal performance and mass flow rates underscore the potential merits of integrating geothermal systems, thereby promoting wider acceptance. Further research is recommended to investigate the influence of varied climatic conditions, building orientations, and room layouts on the efficiency of integrated solar chimney and geothermal designs. Examination of alternative renewable energy sources (RES), innovative building materials, and technologies is also suggested to elevate energy efficiency and sustainability in room space designs. This study contributes substantially to the expanding realm of sustainable building design, providing valuable insights for refining room space performance, curbing energy consumption, and heightening thermal comfort. By highlighting the advantages of renewable energy integration, particularly geothermal systems, the study stimulates the development of more energy-efficient and environmentally friendly building spaces.

Authors and Affiliations

Sanjay Kumar Agarwal, Rafael Cavicchioli Batista

Keywords

Related Articles

Enhancing Heat Transfer in Heating Pipes with Fe3O4 Nanofluid under Magnetic Fields: A Numerical Study

In this investigation, the enhancement of heat transfer in pipes facilitated by Fe3O4-distilled water nanofluid under the influence of magnetic fields is comprehensively studied. The research primarily focuses on examini...

Enhancing the Efficiency of Air Conditioning Systems in High-Temperature Climates Through Direct Evaporative Cooling

This study aims to develop energy-efficient and environmentally friendly cooling solutions that are both effective and adaptable to various climates and structural forms. By leveraging computational fluid dynamics (CFD)...

Enhancement of Pool Boiling Heat Transfer via Water-Based Nanofluids and Multi-Finned Surface Geometries

In the realm of heat transfer, the phenomenon of boiling heat transfer is paramount, especially given its efficiency in harnessing the latent heat of vaporization for significant thermal energy removal with minimal tempe...

Enhancement of Pool Boiling Heat Transfer Through Micro-Finned Surfaces and Al2O3-Water Nanofluids: A Numerical Study

Among the various heat transfer mechanisms, boiling heat transfer is distinguished by its capacity to dissipate substantial heat via the latent heat of vaporization with minimal temperature differentials. This phenomeno...

Enhancing Energy Efficiency in Sow Houses: An Annual Temperature Regulation System Employing Heat Recovery and Photovoltaic-Thermal Technology

This study proposes a novel annual temperature regulation system for sow houses, integrating heat recovery and photovoltaic-thermal (PV/T) technology to optimize energy utilization efficiency and economic benefits. Mathe...

Download PDF file
  • EP ID EP732270
  • DOI https://doi.org/10.56578/jse020205
  • Views 45
  • Downloads 0

How To Cite

Sanjay Kumar Agarwal, Rafael Cavicchioli Batista (2023). Enhancement of Building Thermal Performance: A Comparative Analysis of Integrated Solar Chimney and Geothermal Systems. Journal of Sustainability for Energy, 2(2), -. https://europub.co.uk/articles/-A-732270