Ensemble Learning Applications in Multiple Industries: A Review

Journal Title: Information Dynamics and Applications - Year 2022, Vol 1, Issue 1

Abstract

This study proposes a systematic review of the application of Ensemble learning (EL) in multiple industries. This study aims to review prevailing application in multiple industries to guide for the future landing application. This study also proposes a research method based on Systematic Literature Review (SLR) to address EL literature and help advance our understanding of EL for future optimization. The literature is divided three categories by the National Bureau of Statistics of China (NBSC): the primary industry, the secondary industry and the tertiary industry. Among existing problems in industrial management systems, the frequently discussed are quality control, prediction, detection, efficiency and satisfaction. In addition, given the huge potential in various fields, the gap and further directions are also suggested. This study is essential to industry managers and cross-disciplinary scholars to lead a guideline to solve the issues in practical work, as it provided a panorama of application domains and current problems. This is the first review of the application of EL in multiple industries in the literature. The paper has potential values to broaden the application area of EL, and to proposed a novel research method based SLR to sort out literature.

Authors and Affiliations

Kuo-Yi Lin, Chancy Huang

Keywords

Related Articles

Enhancing Healthcare Data Security in IoT Environments Using Blockchain and DCGRU with Twofish Encryption

In the rapidly evolving landscape of digital healthcare, the integration of cloud computing, Internet of Things (IoT), and advanced computational methodologies such as machine learning and artificial intelligence (AI) ha...

Ensemble Learning Applications in Multiple Industries: A Review

This study proposes a systematic review of the application of Ensemble learning (EL) in multiple industries. This study aims to review prevailing application in multiple industries to guide for the future landing applica...

Classification of Cyclin Proteins Using Amino Acid Composition and an SVM Approach: An In-Depth Analysis

Cyclins, commonly referred to as co-enzymes, are a pivotal family of proteins that modulate cellular growth by activating cell-cycle mediators, proving essential for the cell cycle. Due to the marked dissimilarity in the...

Critical Factors Influencing Cloud Security Posture of Enterprises: An Empirical Analysis

This study examines the aspects that can impact an organization's cloud security posture and the consequences for their cloud adoption strategies. Based on a thorough examination of existing literature, a conceptual fram...

A Deep Convolutional Neural Network Framework for Enhancing Brain Tumor Diagnosis on MRI Scans

Brain tumors are a critical public health concern, often resulting in limited life expectancy for patients. Accurate diagnosis of brain tumors is crucial to develop effective treatment strategies and improve patients' qu...

Download PDF file
  • EP ID EP732622
  • DOI https://doi.org/10.56578/ida010106
  • Views 67
  • Downloads 0

How To Cite

Kuo-Yi Lin, Chancy Huang (2022). Ensemble Learning Applications in Multiple Industries: A Review. Information Dynamics and Applications, 1(1), -. https://europub.co.uk/articles/-A-732622