Establishing an Optimal Online Phishing Detection Method: Evaluating Topological NLP Transformers on Text Message Data
Journal Title: Journal of Data Science and Intelligent Systems - Year 2024, Vol 2, Issue 1
Abstract
This research establishes an optimal classification model for online SMS spam detection by utilizing topological sentence transformer methodologies. The study is a response to the increasing sophisticated and disruptive activities of malicious actors.We present a viable lightweight integration of pre-trained NLP repository models with sklearn functionality. The study design mirrors the spaCy pipeline component architecture in a downstream sklearn pipeline implementation and introduces a user-extensible spam SMS solution. We leverage large-text data models from HuggingFace (RoBERTa-base) via spaCy and apply linguistic NLP transformer methods to short-sentence NLP datasets. We compare the F1-scores of models and iteratively retest models using a standard sklearn pipeline architecture. Applying spaCy transformer modelling achieves an optimal F1-score of 0.938, a result comparable to existing research output from contemporary BERT/SBERT/‘black box’ predictive models. This research introduces a lightweight, user-interpretable, standardized, predictive SMS spam detection model that utilizes semantically similar paraphrase/sentence transformer methodologies and generates optimal F1-scores for an SMS dataset. Significant F1-scores are also generated for a Twitter evaluation set, indicating potential real-world suitability.
Authors and Affiliations
Helen Milner, Michael Baron
Multiple Regression Model as Interpolation Through the Points of Weighted Means
A well-known property of the multiple linear regression is that its plane goes through the point of the mean values of all variables, and this feature can be used to find the model's intercept. This work shows that a re...
Data Science and Applications
This paper investigates the significance of data science as an indispensable instrument for decision-making across multiple domains. The study examines the history, concepts, methods, and applications of data science, as...
An Ensemble Stacking Algorithm to Improve Model Accuracy in Bankruptcy Prediction
Bankruptcy analysis is needed to anticipate bankruptcy. Errors in predicting bankruptcy often cause bankruptcy. Machine learning with high accuracy to analyze reversal must continuously improve its accuracy. Many machine...
Applications of Quantum Computing in Health Sector
The purpose of this paper is to provide an overview of the current state of quantum computing in the health sector and to explore its potential future applications. Quantum computing has the potential to revolutionize a...
Feature Selection, Clustering, and IoMT on Biomedical Engineering for COVID-19 Pandemic: A Comprehensive Review
In this era, feature clustering is a prominent technique in data mining. Feature clustering has also huge applications in biomedical research for multiple purposes including grouping, feature reduction, and many more. Th...