ESTIMATION OF A SUB-GAUSSIAN VECTOR DISTRIBUTION BY THE MONTE-CARLO MARKOV CHAIN APPROACH
Journal Title: Jaunųjų mokslininkų darbai - Year 2014, Vol 41, Issue 1
Abstract
The Monte-Carlo Markov chain procedure for estimation of a sub-Gaussian vector distribution by the maximal likelihood method, where the Monte-Carlo sample size is regulated to ensure the convergence, is constructed in the paper. The termination rule is also implemented by testing statistical hypotheses on an insignificant change of estimates in two steps of the procedure. The termination statistic is approximated with a Chi qaudrat Monte-Carlo Markov chain approach.
Authors and Affiliations
Leonidas Sakalauskas, Ingrida Vaičiulytė
VAIKO IR SUAUGUSIOJO TARPKULTŪRINIO, HERMENEUTINIO DIALOGO RAIŠKA ĮVAIRIOSE UGDYMO APLINKOSE
Šiuolaikinėje visuomenėje sparčiai kintant ekonominėms, socialinėms ir politinėms sąlygoms, vykstant nuolatinei informacinių ir komunikacinių technologijų plėtrai, kinta požiūris į vaiką ir jo ugdymą vaikystėje: vaiko ug...
Power Consumption Optimization with Parallel Computing
Power and energy consumption in multi-core systems is considered in this paper. Power consumption of various multi-core computers with different computing load have been measured. Energy consumption of multi-core computi...
Detection of Malicious Obfuscated Code in Websites Using its Characteristics.
The growth in the popularity of the web has been matched by a rapid increase in the number of reported vulnerabilities, so the fight against malware and its detection in websites is becoming increasingly important. In or...
The Typology of Interpretations of Historical Styles in Contemporary
Studenčių požiūrio į fizinį aktyvumą ir sveikatą kaita