Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 4

Abstract

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method. Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy coefficient (its shape) with the aim of Diffusion Tensor imaging (as a non-invasive method) in the grading of gliomas. Methods: A group of 20 patients with histologically glial approved was evaluated. In this study, we used a 1.5-Tesla MR system (AVANTO; Siemens, Germany) with a standard head coil for scanning. Multi-directional diffusion weighted imaging (measured in 12 non-collinear directions) and T1 weighted non-enhanced were performed for all patients. We defined two Regions of Interest (ROIs); white matter adjacent to the tumor and the homologous fiber tracts to the first ROI in the contralateral hemisphere. Results: Linear anisotropy coefficient (CL), fractional anisotropy (FA) values and ratios of low-grade peri-tumoral fiber tracts were higher than high-grade gliomas (Pvalue CLt =0.014, P-value CLt/n=0.019 and P-value FAt =0.006, P-value FAt/n=0.024). In addition, we perform ROC curve for each parameter (CL ratio-AUC = 0.82 and FA ratio-AUC = 0.868). Conclusion: Our findings prove significant difference between diffusion anisotropy (FA) and diffusion shape (Cl) between low grade and high grade glioma, based on which we find this evaluation helpful in the grading of glial tumors. Citation: Davanian F, Faeghi F, Shahzadi S, Farshifar Z. Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors. J Biomed Phys Eng. 2019;9(4):459-464. https://doi.org/10.31661/jbpe.v0i0.513.

Authors and Affiliations

F. Faeghi, S. Shahzadi, Z. Farshidfar

Keywords

Related Articles

Evaluation of Radiation Exposure Pattern and Radiation Absorbed Dose Resulting from Occupational Exposure of Anesthesiologists to Ionizing Radiation

Introduction: Little information is available concerning the radiation exposure of anesthesiologists, and no such data have previously been collected in Iran. This prospective study was performed to determine the amount...

Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles?

Since the early days of human life on the Earth, our skin has been exposed to different levels of light. Recently, due to inevitable consequences of modern life, humans are not exposed to adequate levels of natural light...

MRS Shimming: An Important Point Which Should not be Ignored

Background: Proton magnetic resonance spectroscopy (MRS) is a well-known device for analyzing the biological fluids metabolically. Obtaining accurate and reliable information via MRS needs a homogeneous magnetic field in...

Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that...

Oral Administration of Vitamin C, Cimetidine and Famotidine on Micronuclei Induced by Low Dose Radiationin in Mouse Bone Marrow Cells

Background: In many studies, chemicals and natural materials were tested to reduce the harmful effects of radiation. It is known that Famotidine and vitamin C reduce DNA damage. Objective: The aim of this study was to ev...

Download PDF file
  • EP ID EP648053
  • DOI -
  • Views 98
  • Downloads 0

How To Cite

F. Faeghi, S. Shahzadi, Z. Farshidfar (2019). Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors. Journal of Biomedical Physics and Engineering, 9(4), 459-464. https://europub.co.uk/articles/-A-648053