Evaluation of Extractables in Processed and Unprocessed Polymer Materials Used for Pharmaceutical Applications

Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 1

Abstract

Polymeric materials are often used in pharmaceutical packaging, delivery systems, and manufacturing components. There is continued concern that chemical entities from polymeric components may leach into various dosage forms, particularly those that are comprised of liquids such as parenterals, injectables, ophthalmics, and inhalation products. In some cases, polymeric components are subjected to routine extractables testing as a control measure. To reduce the risk of discovering leachables during stability studies late in the development process, or components that may fail extractables release criteria, it is proposed that extractables testing on polymer resins may be useful as a screening tool. Two studies have been performed to evaluate whether the extractables profile generated from a polymer resin is representative of the extractables profile of components made from that same resin. The ELSIE Consortium pilot program examined polyvinyl chloride and polyethylene, and another study evaluated polypropylene and a copolymer of polycarbonate and acrylonitrile butadiene styrene. The test materials were comprised of polymer resin and processed resin or molded components. Volatile, semi-volatile, and nonvolatile chemical profiles were evaluated after headspace sampling and extraction with solvents of varying polarity and pH. The findings from these studies indicate that there may or may not be differences between extractables profiles obtained from resins and processed forms of the resin depending on the type of material, the compounds of interest, and extraction conditions used. Extractables testing of polymer resins is useful for material screening and in certain situations may replace routine component testing.

Authors and Affiliations

Cheryl L. M. Stults, Jennifer M. Ansell, Arthur J. Shaw, Lee M. Nagao

Keywords

Related Articles

Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres

A stability study was performed on ivermectin (IVM)-loaded biodegradable microparticles intended for injection in dogs. The rational was to evaluate the performances upon irradiation of a drug, such as IVM, with a few cr...

Enhancing the Antitumor Activity of Berberine Hydrochloride by Solid Lipid Nanoparticle Encapsulation

Berberine hydrochloride (BH) is an isoquinolin alkaloid with promising anticancer efficacies. Nevertheless, further development and application of this compound had been hampered by its poor aqueous solubility, low gastr...

Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery

“Margination” refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in bl...

Disintegration Mediated Controlled Release Supersaturating Solid Dispersion Formulation of an Insoluble Drug: Design, Development, Optimization, and In Vitro Evaluation

The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was design...

Topical Formulations Containing Pimenta pseudocaryophyllus Extract: In Vitro Antioxidant Activity and In Vivo Efficacy Against UV-B-Induced Oxidative Stress

Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanoli...

Download PDF file
  • EP ID EP682209
  • DOI  10.1208/s12249-014-0188-6
  • Views 78
  • Downloads 0

How To Cite

Cheryl L. M. Stults, Jennifer M. Ansell, Arthur J. Shaw, Lee M. Nagao (2015). Evaluation of Extractables in Processed and Unprocessed Polymer Materials Used for Pharmaceutical Applications. AAPS PharmSciTech, 16(1), -. https://europub.co.uk/articles/-A-682209